首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The phospholipid distribution and the ratio of cholesterol-to-cholesterol ester have been determined for plasmas isolated from normal, fasted and P. knowlesi-infected rhesus monkeys. Compared to normal plasmas, the infected plasmas show phospholipid patterns with slight increases in phosphatidylcholine and larger decreases in lysophosphatidylcholine. The cholesterol-to-cholesterol ester ratio is always less than one in normal plasmas and greater than one for infected plasmas. There are no differences between samples isolated from fasting and non-fasting animals for any of the constituents examined.  相似文献   

2.
Treatments currently used to prevent congenital toxoplasmosis are non-specific of Toxoplasma gondii and have grievous side effects. To develop a more specific and less toxic drug, we have designed SP230, an imidazo[1,2-b]pyridazine salt targeting the Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) and active against acute toxoplasmosis in mice. Efficiency of SP230 to inhibit foetal transmission of the parasite was evaluated in a mouse model of congenital toxoplasmosis. Swiss mice were infected at mid-pregnancy with tachyzoites or cysts of the ME49 strain of T. gondii by intraperitoneal and oral route, respectively, and treated with SP230 at 50 mg/kg for 5 days by the same routes. Parasite burden in organs of dams and in foetuses was measured by quantitative PCR. Intraperitoneal administration of SP230 drastically reduced the number of parasites (more than 97% of reduction) in the brain and lungs of dams, and led to a reduction of 66% of parasite burden in foetuses. Oral administration of SP230 was particularly efficient with 97% of reduction of parasite burdens in foetuses. SP230 did not impact number and weight of offspring in our conditions. This inhibitor of TgCDPK1 is a promising candidate for the development of alternative therapeutics to treat infected pregnant women.  相似文献   

3.
Plasmodium falciparum is the causative agent of malaria, a deadly infectious disease for which treatments are scarce and drug-resistant parasites are now increasingly found. A comprehensive method of identifying and quantifying metabolites of this intracellular parasite could expand the arsenal of tools to understand its biology, and be used to develop new treatments against the disease. Here, we present two methods based on liquid chromatography tandem mass spectrometry for reliable measurement of water-soluble metabolites involved in phospholipid biosynthesis, as well as several other metabolites that reflect the metabolic status of the parasite including amino acids, carboxylic acids, energy-related carbohydrates, and nucleotides. A total of 35 compounds was quantified. In the first method, polar compounds were retained by hydrophilic interaction chromatography (amino column) and detected in negative mode using succinic acid-13C4 and fluorovaline as internal standards. In the second method, separations were carried out using reverse phase (C18) ion-pair liquid chromatography, with heptafluorobutyric acid as a volatile ion pairing reagent in positive detection mode, using d9-choline and 4-aminobutanol as internal standards. Standard curves were performed in P. falciparum-infected and uninfected red blood cells using standard addition method (r2 > 0.99). The intra- and inter-day accuracy and precision as well as the extraction recovery of each compound were determined. The lower limit of quantitation varied from 50 pmol to 100 fmol/3 × 107 cells. These methods were validated and successfully applied to determine intracellular concentrations of metabolites from uninfected host RBCs and isolated Plasmodium parasites.  相似文献   

4.
The protozoan parasite Toxoplasma gondii is a representative of apicomplexan parasites that invades host cells through an unconventional motility mechanism. During host cell invasion it forms a specialized membrane-surrounded compartment that is called the parasitophorous vacuole. The interactions between the host cell and parasite membranes are complex and recent studies have revealed in more detail that both the host cell and the parasite membrane contribute to the formation of the parasitophorous vacuole. By using our a new specimen preparation technique that allows three-dimensional imaging of thick-sectioned internal cell structures with high-resolution, low-voltage field emission scanning electron microscopy, we were able to visualize continuous structural interactions of the host cell membrane with the parasite within the parasitophorous vacuole. Fibrous and tubular material extends from the host cell membrane and is connected to parasite membrane components. Shorter protrusions are also elaborated from the parasite. Several of these shorter fine protrusions connect to the fibrous material of the host cell membrane. The elaborate network may be used for modifications of the parasitophorous vacuole membrane that will allow utilization of nutrients from the host cell by the parasite while it is being protected from host cell attacks. The structural interactions between parasite and host cells undergo time-dependent changes, and a fission pore is the most prominent structure left connecting the parasite with the host cell. The fission pore is anchored in the host cell by thick structural components of unknown nature. The new information gained with this technique includes structural details of fibrous and tubular material that is continuous between the parasite and host cell and can be imaged in three dimensions. We present this technique as a tool to investigate more fully the complex structural interactions of the host cell and the parasite residing in the parasitophorous vacuole.  相似文献   

5.
6.
The quinolone decoquinate (DCQ) is widely used in veterinary practice for the treatment of bacterial and parasitic infections, most notably, coccidiosis in poultry and in ruminants. We have investigated the effects of treatment of Toxoplasma gondii in infected human foreskin fibroblasts (HFF) with DCQ. This induced distinct alterations in the parasite mitochondrion within 24 h, which persisted even after long-term (500 nM, 52 days) treatment, although there was no parasiticidal effect. Based on the low half-maximal effective concentration (IC50) of 1.1 nM and the high selectivity index of >5000, the efficacy of oral treatment of pregnant mice experimentally infected with T. gondii oocysts with DCQ at 10 mg/kg/day for 5 days was assessed. However, the treatment had detrimental effects, induced higher neonatal mortality than T. gondii infection alone, and did not prevent vertical transmission. Thus, three quinoline-O-carbamate derivatives of DCQ, anticipated to have better physicochemical properties than DCQ, were assessed in vitro. One such compound, RMB060, displayed an exceedingly low IC50 of 0.07 nM, when applied concomitantly with the infection of host cells and had no impact on HFF viability at 10 µM. As was the case for DCQ, RMB060 treatment resulted in the alteration of the mitochondrial matrix and loss of cristae, but the changes became apparent at just 6 h after the commencement of treatment. After 48 h, RMB060 induced the expression of the bradyzoite antigen BAG1, but TEM did not reveal any other features reminiscent of bradyzoites. The exposure of infected cultures to 300 nM RMB060 for 52 days did not result in the complete killing of all tachyzoites, although mitochondria remained ultrastructurally damaged and there was a slower proliferation rate. The treatment of mice infected with T. gondii oocysts with RMB060 did reduce parasite burden in non-pregnant mice and dams, but vertical transmission to pups could not be prevented.  相似文献   

7.
The identification of new compounds is urgent to develop safe and efficacious candidates for leishmaniasis treatment, especially from natural products as a potential source of active molecules against neglected tropical parasite diseases. Inspired by the efficacious quinoline alkaloid microbial effects, we have previously reported the synthesis and biological activity of 2-phenylquinoline-4-carboxylic acids and poly-substituted quinolines against parasites. In this work, a series of eighteen 2-styryl-4-quinolinecarboxylic acids were synthesized under microwave irradiation settings obtaining from good to excellent yields (60%-90%), shorter reaction times (2 minutes), and eco-friendly experimental conditions. All these products were evaluated against infective forms of Leishmania (Leishmania) amazonensis, such as promastigotes and intracellular amastigotes, based on cytotoxicity assays, including host macrophage infection assays. Compounds 4 and 5 possessing a 2-chloro or 4-chlorostyryl moiety, respectively, were considered the most promising antileishmanial agents due to the parasite killing effect in intracellular forms inside infected macrophages. Thus, our results revealed that the 2-styryl-4-quinolinecarboxylic acid backbone structure was essential for the activity against intracellular pathogens like L. (L.) amazonensis.  相似文献   

8.
Apicomplexan parasites employ complex and unconventional mechanisms for cell locomotion, host cell invasion, and cell division that are only poorly understood. While immunofluorescence and conventional transmission electron microscopy have been used to answer questions about the localization of some cytoskeletal proteins and cell organelles, many questions remain unanswered, partly because new methods are needed to study the complex interactions of cytoskeletal proteins and organelles that play a role in cell locomotion, host cell invasion, and cell division. The choice of fixation and preparation methods has proven critical for the analysis of cytoskeletal proteins because of the rapid turnover of actin filaments and the dense spatial organization of the cytoskeleton and its association with the complex membrane system. Here we introduce new methods to study structural aspects of cytoskeletal motility, host cell invasion, and cell division of Toxoplasma gondii, a most suitable laboratory model that is representative of apicomplexan parasites. The novel approach in our experiments is the use of high resolution low voltage field emission scanning electron microscopy (LVFESEM) combined with two new specimen preparation techniques. The first method uses LVFESEM after membrane extraction and stabilization of the cytoskeleton. This method allows viewing of actin filaments which had not been possible with any other method available so far. The second approach of imaging the parasite's ultrastructure and interactions with host cells uses semithick sections (200 nm) that are resin de-embedded (Ris and Malecki, 1993) and imaged with LVFESEM. This method allows analysis of structural detail in the parasite before and after host cell invasion and interactions with the membrane of the parasitophorous vacuole as well as parasite cell division.  相似文献   

9.
To verify the size and emergence time of new permeability pathways (NPPs) in malaria parasites, the permeability of the Plasmodium falciparum-infected erythrocytes was tested with different particle sizes of nanomaterials by flow cytometry assay. The results confirmed the permeability of the host cell membrane increases with parasite maturation for the stage-development evolution of NPPs, and especially found that a particle size of about 50 nm had higher efficiency. As a kind of the novel nanomaterials, nitrogen-doped carbon dots (NCDs) showed no toxicity, specificity binding ability to the malaria parasites, and could label live elder blood-stage P. falciparum through NPPs, indicating the potential application in cell imaging. NPPs and some nanomaterials such as NCDs deserve more attention and exploration for the elimination and prevention of malaria.  相似文献   

10.
Our work on targeting redox equilibria of malarial parasites propagating in red blood cells has led to the selection of six 1,4-naphthoquinones, which are active at nanomolar concentrations against the human pathogen Plasmodium falciparum in culture and against Plasmodium berghei in infected mice. With respect to safety, the compounds do not trigger hemolysis or other signs of toxicity in mice. Concerning the antimalarial mode of action, we propose that the lead benzyl naphthoquinones are initially oxidized at the benzylic chain to benzoyl naphthoquinones in a heme-catalyzed reaction within the digestive acidic vesicles of the parasite. The major putative benzoyl metabolites were then found to function as redox cyclers: (i) in their oxidized form, the benzoyl metabolites are reduced by NADPH in glutathione reductase-catalyzed reactions within the cytosols of infected red blood cells; (ii) in their reduced forms, these benzoyl metabolites can convert methemoglobin, the major nutrient of the parasite, to indigestible hemoglobin. Studies on a fluorinated suicide-substrate indicate as well that the glutathione reductase-catalyzed bioactivation of naphthoquinones is essential for the observed antimalarial activity. In conclusion, the antimalarial naphthoquinones are suggested to perturb the major redox equilibria of the targeted infected red blood cells, which might be removed by macrophages. This results in development arrest and death of the malaria parasite at the trophozoite stage.  相似文献   

11.
Syntheses for the new photosensitizers HOSiPc-OSi(CH3)2(CH2)3N(CH2)1 or 3(CH3)2, Pc 34 and Pc 25, have been developed and the order of activity of these photosensitizers and the previously reported photosensi-tizer Pc 4, HOSiPcOSi(CH3)2(CH2)3N(CH3)2, in the dark and with broad-band red light toward Plasmodium falciparum in red blood cell (RBC) suspensions has been studied. The order of activity has been found to be Pc 4 Pc 34 Pc 25. Thus, the activity of the photosensitizers under both sets of conditions is inversely proportional to the length of their terminal amino alkyl chains. The 50% inhibition dye concentration (IC50) in the dark for the parasites in RBC suspension with Pc 4 is 24 nM and the dye concentration and light fluence that yield:3 log10 of parasite inactivation with Pc 4 are 2 mM and 3 J/cm2, respectively. The synthesis of DNA and proteins by the parasites in culture was strongly inhibited by Pc 4 in the dark while parasite lactate dehydrogenase (pLDH) activity was unaffected. With Pc 4 and light, DNA and protein synthesis of the parasites in culture was strongly inhibited, pLDH activity of the parasites was moderately inhibited and ribosome density of the parasite cells was reduced. Gel electrophoresis studies showed that synthesis of all parasite proteins was inhibited to a similar extent. These results suggest that Pc 4 both in the dark and with light inactivates the cells by disturbing their machinery for the synthesis of not just one but a whole series of proteins. It is concluded that Pc 4 and light may be able to serve as a practical sterilization combination not only for HIV and other viruses but also for malaria parasites in RBC concentrates, and that Pc 4 by itself may have potential as a chemotherapeutic agent toward malaria.  相似文献   

12.
In the fight towards eradication of malaria, identifying compounds active against new drug targets constitutes a key approach. Plasmodium falciparum 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase (PfHPPK) has been advanced as a promising target, as being part of the parasite essential folate biosynthesis pathway while having no orthologue in the human genome. However, no drug discovery efforts have been reported on this enzyme. In this study, we conducted a three-step screening of our in-house antifolate library against PfHPPK using a newly designed PfHPPK-GFP protein construct. Combining virtual screening, differential scanning fluorimetry and enzymatic assay, we identified 14 compounds active against PfHPPK. Compounds’ binding modes were investigated by molecular docking, suggesting competitive binding with the HMDP substrate. Cytotoxicity and in vitro ADME properties of hit compounds were also assessed, showing good metabolic stability and low toxicity. The most active compounds displayed low micromolar IC50 against drug-resistant parasites. The reported hit compounds constitute a good starting point for inhibitor development against PfHPPK, as an alternative approach to tackle the malaria parasite.  相似文献   

13.
Increased resistance of Plasmodium falciparum to most available drugs challenges the control of malaria. Studies with protease inhibitors have suggested important roles for the falcipain family of cysteine proteases. These enzymes act in concert with other proteases to hydrolyze host erythrocyte hemoglobin in the parasite food vacuole. In order to find potential new antimalarial drugs, we screened in silico the ZINC database using two different protocols involving structure- and ligand-based methodologies. Our search identified 19 novel low micromolar inhibitors of cultured chloroquine resistant P. falciparum. The most active compound presented an IC50 value of 0.5 μM against cultured parasites and it also inhibited the cysteine protease falcipain-2 (IC50 = 25.5 μM). These results identify novel classes of antimalarials that are structurally different from those currently in use and which can be further derivatized to deliver leads suitable for optimisation.  相似文献   

14.
The multivariate algorithm hierarchical cluster analysis is applied to sets of resonance Raman spectra collected from human erythrocytes infected with the malaria parasite Plasmodium falciparum. The images obtained yield information about the distribution of hemoglobin and hemozoin (or malaria pigment) within the parasitized cells and about their molecular structure. This method has the advantage of conveying more information than other imaging approaches based on resonance Raman spectroscopy, and it is a promising tool to study the hemozoin formation process and its interaction with antimalarial drugs within unstained, well-preserved parasites.  相似文献   

15.
Nitrogen-containing atoms in their core structures have been exclusive building blocks in drug discovery and development. One of the most significant and well-known heterocycles is the 1,3,4-thidiazole nucleus, which is found in a wide range of natural products and therapeutic agents. In the present work, certain tris-1,3,4-thiadiazole derivatives (6, 7) were synthesized through a multi-step synthesis approach. All synthesized compounds were characterized using different spectroscopic tools. Previously, thiadiazole compounds as anti-Toxoplasma gondii agents have been conducted and reported in vitro. However, this is the first study to test the anti-Toxoplasma gondii activity of manufactured molecular hybrids thiadiazole in an infected mouse model with the acute RH strain of T. gondii. All the observed results demonstrated compound (7)’s powerful activity, with a considerable reduction in the parasite count reaching 82.6% in brain tissues, followed by liver and spleen tissues (65.35 and 64.81%, respectively). Inflammatory and anti-inflammatory cytokines assessments proved that Compound 7 possesses potent antiparasitic effect. Furthermore, docking tests against TgCDPK1 and ROP18 kinase (two major enzymes involved in parasite invasion and egression) demonstrated compound 7’s higher potency compared to compound 6 and megazol. According to the mentioned results, tris-1,3,4-thiadiazole derivatives under test can be employed as potent antiparasitic agents against the acute RH strain of T. gondii.  相似文献   

16.
Although acidocalcisomes have been well characterized morphologically in other apicomplexan parasites, no such characterization has been done in Plasmodium spp. Here, we report that Plasmodium falciparum merozoites possess electron-dense organelles rich in phosphorus and calcium, as detected by X-ray microanalysis of intact cells, which are similar to the acidocalcisomes of other apicomplexans, but of more irregular form. In agreement with these results malaria parasites possess large amounts of short- and long-chain polyphosphate (polyP), which are associated with acidocalcisomes in other organisms. PolyP levels were highest in the trophozoite stage of the parasite. Treatment of isolated trophozoites with chloroquine resulted in a significant hydrolysis of polyP. Taken together, these results provide evidence that acidocalcisomes from Plasmodium falciparum do not differ significantly from acidocalcisomes of other apicomplexan parasites.  相似文献   

17.
Onchocerciasis is a leading cause of blindness with at least 37 million people infected and more than 120 million people at risk of contracting the disease; most (99%) of this population, threatened by infection, live in Africa. The drug of choice for mass treatment is the microfilaricidal Mectizan® (ivermectin); it does not kill the adult stages of the parasite at the standard dose which is a single annual dose aimed at disease control. However, multiple treatments a year with ivermectin have effects on adult worms. The discovery of new therapeutic targets and drugs directed towards the killing of the adult parasites are thus urgently needed. The chitinase of filarial nematodes is a new drug target due to its essential function in the metabolism and molting of the parasite. Closantel is a potent and specific inhibitor of chitinase of Onchocerca volvulus (OvCHT1) and other filarial chitinases. However, the binding mode and specificity of closantel towards OvCHT1 remain unknown. In the absence of a crystallographic structure of OvCHT1, we developed a homology model of OvCHT1 using the currently available X-ray structures of human chitinases as templates. Energy minimization and molecular dynamics (MD) simulation of the model led to a high quality of 3D structure of OvCHIT1. A flexible docking study using closantel as the ligand on the binding site of OvCHIT1 and human chitinases was performed and demonstrated the differences in the closantel binding mode between OvCHIT1 and human chitinase. Furthermore, molecular dynamics simulations and free-energy calculation were employed to determine and compare the detailed binding mode of closantel with OvCHT1 and the structure of human chitinase. This comparative study allowed identification of structural features and properties responsible for differences in the computationally predicted closantel binding modes. The homology model and the closantel binding mode reported herein might help guide the rational development of novel drugs against the adult parasite of O. volvulus and such findings could be extrapolated to other filarial neglected diseases.  相似文献   

18.
A high-throughput microfluidic poly-(dimethylsiloxane) biochip was developed to quantify bacterial adhesion to single host cells by real-time PCR assay. The biochip is simply structured with a two-dimensional array of 900 micro-wells, one inlet, and one outlet micro-channels. Isolation of single infected host cells into the individual micro-wells of the biochip was achieved by one-step vacuum-driven microfluidics. The adhered bacterial cells were then quantified by direct on-chip real-time PCR assay with single-bacterium-detection sensitivity. The performance of this microfluidic platform was demonstrated through profiling of the association of a common bacterial pathogen, Pseudomonas aeruginosa, to single host human lung epithelial A549 cells, revealing an adherence distribution that has not been previously reported. This microfluidic platform offers a simple and effective tool for biologists to analyze pathogen–host interaction at the single-cell level without the necessities of fluorescence labeling. The chip can similarly be used for other PCR-based applications requiring single-cell analysis.  相似文献   

19.
This work focuses on the search and development of drugs that may become new alternatives to the commercial drugs currently available for treatment of leishmaniasis. We have designed and synthesized 12 derivatives of bis(spiropyrazolone)cyclopropanes. We then characterized their potential application in therapeutic use. For this, the in vitro biological activities against three eukaryotic models—S. cerevisiae, five cancer cell lines, and the parasite L. mexicana—were evaluated. In addition, cytotoxicity against non-cancerous mammalian cells has been evaluated and other properties of interest have been characterized, such as genotoxicity, antioxidant properties and, in silico predictive adsorption, distribution, metabolism, and excretion (ADME). The results that we present here represent a first screening, indicating two derivatives of bis(spiropyrazolone)cyclopropanes as good candidates for the treatment of leishmaniasis. They have good specificity against parasites with respect to mammalian cells.  相似文献   

20.
The aim of this study was to investigate (1) whether intestine endoparasites (Diphyllobothrium latum) accumulate trace elements related to its body size and (2) whether parasites bioconcentrate more trace elements than their host. Freshwater fish (rainbow trout Oncorhynchus mykiss) were sampled in the deep, oligotrophic and uncontaminated Lake Riñihue in Southern Chile. The element concentration of different organs (intestine, muscle, liver) and of the intestine endoparasites were analyzed using total reflection X-ray fluorescence spectrometry. The results showed that the mass fraction for Mn, Fe, Ni, Cu, and Pb decreased significantly with the body size (dry weight) of the endoparasite. Only Zn did not reveal such a relationship. Small parasites accumulated up to 80 times more Fe, Ni, Mn, Pb, and Cu than large parasites. Compared to the fish organs, small parasites accumulated in maximum 35 to 307 times more Mn, 5 to 255 times more Fe, 98 to 220 times more Ni, 3 to 175 times more Cu, and 0.4 to 12 times more Zn than the fish. Lead was only found in the endoparasite, but not in the fish organs. We conclude that (1) D. latum is a good indicator for trace element accumulation in fishes and that (2) small endoparasites are more sensitive as bioindicators because they showed higher bioconcentrations of trace metals than larger parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号