首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we discuss the absolutely anticommuting nilpotent symmetries for perturbative quantum gravity in general curved spacetime in linear and non-linear gauges. Further, we analyze the finite field-dependent BRST (FFBRST) transformation for perturbative quantum gravity in general curved spacetime. The FFBRST transformation changes the gauge-fixing and ghost parts of the perturbative quantum gravity within functional integration. However, the operation of such symmetry transformation on the generating functional of perturbative quantum gravity does not affect the theory on physical ground. The FFBRST transformation with appropriate choices of finite BRST parameter connects non-linear Curci–Ferrari and Landau gauges of perturbative quantum gravity. The validity of the results is also established at quantum level using Batalin–Vilkovisky (BV) formulation.  相似文献   

2.
In this paper the novel features of Yokoyama gaugeon formalism are stressed out for the theory of perturbative quantum gravity in the Einstein curved spacetime. The quantum gauge transformations for the theory of perturbative gravity are demonstrated in the framework of gaugeon formalism. These quantum gauge transformations lead to renormalised gauge parameter. Further, we analyse the BRST symmetric gaugeon formalism which embeds more acceptable Kugo–Ojima subsidiary condition. Further, the BRST symmetry is made finite and field-dependent. Remarkably, the Jacobian of path integral under finite and field-dependent BRST symmetry amounts to the exact gaugeon action in the effective theory of perturbative quantum gravity.  相似文献   

3.
We establish the connection between the generating functional for the first class theories and the generating functional for the second class theories using the finite field dependent BRST (FFBRST) transformation. We show this connection with the help of explicit calculations in two different models. The generating functional of the Proca model is obtained from the generating functional of the Stueckelberg theory for massive spin 1 vector field using FFBRST transformation. In the other example we relate the generating functionals for gauge invariant and gauge variant theories for a self-dual chiral boson.  相似文献   

4.
The Einstein–Hilbert action in the context of higher derivative theories is considered for finding their BRST symmetries. Being a constraint system, the model is transformed in the minisuperspace language with the FRLW background and the gauge symmetries are explored. Exploiting the first order formalism developed by Banerjee et al. the diffeomorphism symmetry is extracted. From the general form of the gauge transformations of the field, the analogous BRST transformations are calculated. The effective Lagrangian is constructed by considering two gauge-fixing conditions. Further, the BRST (conserved) charge is computed, which plays an important role in defining the physical states from the total Hilbert space of states. The finite field-dependent BRST formulation is also studied in this context where the Jacobian for the functional measure is illustrated specifically.  相似文献   

5.
Recently a new type of quadratic gauge was introduced in QCD in which the degrees of freedom are suggestive of a phase of abelian dominance. In its simplest form it is also free of Gribov ambiguity. However this gauge is not suitable for usual perturbation theory. The finite field dependent BRST (FFBRST) transformation is a method established to interrelate generating functionals for different effective versions of gauge fixed field theories. In this paper we propose a FFBRST transformation suitable for transforming the theory in the new quadratic gauge into the standard Lorenz gauge Faddeev–Popov version of the effective lagrangian. The task is made interesting by the fact that the effective lagrangian is invariant under two different BRST transformations which leads to suitable extension of the previous procedures to accomplish the required result. We are thus able to identify a field redefinition to go from a non-perturbative phase of QCD to perturbative QCD.  相似文献   

6.
The structure of the symmetry algebra of theories with simultaneous local and rigid symmetries is analyzed. BRST-invariant Faddeev-Popov gauge-fixing in such theories is discussed and it is proven that the BRST-transformations can always be made to commute with the rigid symmetries by assigning specific transformation rules to the ghosts. The problem of keeping the rigid symmetries manifest in the quantum theory is shown to reduce to the problem of finding covariant gauge conditions. Such covariant gauges exist only if the algebra of local and rigid symmetries has a semi-direct product structure.  相似文献   

7.
8.
9.
We reconsider the Adler–Bardeen theorem for the cancellation of gauge anomalies to all orders, when they vanish at one loop. Using the Batalin–Vilkovisky formalism and combining the dimensional-regularization technique with the higher-derivative gauge invariant regularization, we prove the theorem in the most general perturbatively unitary renormalizable gauge theories coupled to matter in four dimensions, and we identify the subtraction scheme where anomaly cancellation to all orders is manifest, namely no subtractions of finite local counterterms are required from two loops onwards. Our approach is based on an order-by-order analysis of renormalization, and, differently from most derivations existing in the literature, does not make use of arguments based on the properties of the renormalization group. As a consequence, the proof we give also applies to conformal field theories and finite theories.  相似文献   

10.
The Galilean invariance of the Navier–Stokes equation is shown to be akin to a global gauge symmetry familiar from quantum field theory. This symmetry leads to a multiple counting of infinitely many inertial reference frames in the path integral approach to randomly stirred fluids. This problem is solved by fixing the gauge, i.e., singling out one reference frame. The gauge fixed theory has an underlying Becchi–Rouet–Stora (BRS) symmetry which leads to the Ward identity relating the exact inverse response and vertex functions. This identification of Galilean invariance as a gauge symmetry is explored in detail, for different gauge choices and by performing a rigorous examination of a discretized version of the theory. The Navier–Stokes equation is also invariant under arbitrary rectilinear frame accelerations, known as extended Galilean invariance (EGI). We gauge fix this extended symmetry and derive the generalized Ward identity that follows from the BRS invariance of the gauge-fixed theory. This new Ward identity reduces to the standard one in the limit of zero acceleration. This gauge-fixing approach unambiguously shows that Galilean invariance and EGI constrain only the zero mode of the vertex but none of the higher wavenumber modes.  相似文献   

11.
A recently presented method, that permits one to calculate gauge-fixing conditions from a given gauge-breaking term, is applied to internal as well as external Yang-Mills theories. As to the internal case, the known gauge-fixing conditions can easily be reproduced in a unified way. For the external case, i.e., the Poincaré gauge theory of gravitation, new gauge-fixing conditions are obtained, in particular the full nonlinear generalization of the Coulomb and axial gauge. They prove to be simultaneously valid for theories with or without torsion.  相似文献   

12.
We present a general framework for manifestly-covariant canonical formulation of Poincaré gauge theories. We construct a general class of action that is invariant under two kinds of BRS transformations—translation and internal Lorentz—and suitable for manifestly-covariant canonical quantization. This theory contains a great number of conserved quantities, which we investigate systematically. It is also pointed out that a canonical formulation of higher-derivative theories may be obtained as a limiting case in this framework.  相似文献   

13.
We study the one-loop quantum corrections for higher-derivative superfield theories, generalizing the approach for calculating the superfield effective potential. In particular, we calculate the effective potential for two versions of higher-derivative chiral superfield models. We point out that the equivalence of the higher-derivative theory for the chiral superfield and the one without higher derivatives but with an extended number of chiral superfields occurs only when the mass term is contained in the general Lagrangian. The presence of divergences can be taken as an indication of that equivalence.  相似文献   

14.
《Nuclear Physics B》1999,551(3):813-825
We apply the formalism of extended BRS symmetry to the investigation of the gauge dependence of the effective potential in a spontaneously symmetry broken gauge theory. This formalism, which includes a set of Grassmann parameters defined as the BRS variations of the gauge-fixing parameters, allows us to derive in a quick and unambiguous way the related Nielsen identities, which express the physical gauge independence, in a class of generalized 't Hooft gauges, of the effective potential. We show in particular that the validity of the Nielsen identities does not require any constraint on the gauge-fixing parameters, contrary to some claims found in the literature. We use the method of algebraic renormalization, which leads to results independent of the particular renormalization scheme used.  相似文献   

15.
The usual superspace approach to supersymmetric gauge theories suffers from problems with infrared divergences which greatly complicate multiloop calculations. We eliminate these divergences by introducing a non-local gauge-fixing term. In the background field method this term leads to unusual quantum-background interactions. Functional methods are presented for dealing with these interactions. As an example we compute the two-loop Yang-Mills β-function using the background field method in superspace. We also show how a non-local gauge can be used in ordinary, non-supersymmetric Yang-Mills theory.  相似文献   

16.
We consider gauge coupling unification in Lee–Wick extensions of the Standard Model that include higher-derivative quadratic terms beyond the minimally required set. We determine how the beta functions are modified when some Standard Model particles have two Lee–Wick partners. We show that gauge coupling unification can be achieved in such models without requiring the introduction of additional fields in the higher-derivative theory and we comment on possible ultraviolet completions.  相似文献   

17.
We give a manifestly supersymmetric quantization scheme for linearized supergravity, motivated by the desire to develop a background field method for the full non-linear theory. Supersymmetric gauge-fixing constraints are constructed and the corresponding ghost action is discussed. It is found that the Faddeev-Popov action itself possesses invariances, requiring “secondary” gauge fixing, which in turn leads to “secondary” ghost fields, the latter having normal statistics. The gauge-fixing constraints are used to construct gauge-fixing terms in the action, with a total of four gauge-fixing parameters. The superpropagators are found and may be greatly simplified by certain choices of these parameters.  相似文献   

18.
We formulate a perturbation theory in terms of superfields for Lagrangian field theories which are expressable by chiral or general scalar superfields. Especially we consider the generalized QED model of Wess and Zumino where an additional local gauge symmetry is present. Our calculations are manifestly covariant with respect to supersymmetry and local gauge transformations.  相似文献   

19.
《Nuclear Physics B》1999,541(3):566-614
We present a general method for constructing perturbative quantum field theories with global symmetries. We start from a free non-interacting quantum field theory with given global symmetries and we determine all perturbative quantum deformations assuming the construction is not obstructed by anomalies. The method is established within the causal Bogoliubov-Shirkov-Epstein-Glaser approach to perturbative quantum field theory (which leads directly to a finite perturbative series and does not rely on an intermediate regularization). Our construction can be regarded as a direct implementation of Noether's method at the quantum level. We illustrate the method by constructing the pure Yang-Mills theory (where the relevant global symmetry is BRST symmetry), and the N = 1 supersymmetric model of Wess and Zumino. The whole construction is done before the so-called adiabatic limit is taken. Thus, all considerations regarding symmetry, unitarity and anomalies are well defined even for massless theories.  相似文献   

20.
We use indirect, renormalization group arguments to calculate the gravitational counterterms needed to renormalize an interacting non-abelian gauge theory in curved space-time. This method makes it straightforward to calculate terms in the trace anomaly which first appear at high order in the coupling constant, some of which would need a 4-loop calculation to find directly. The role of gauge invariance in the theory is considered, and we discuss briefly the effect of using coordinate-dependent gauge-fixing terms. We conclude by suggesting possible applications of this work to models of the very early universe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号