首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we describe a bipolar molecular design for small molecule solution-processed organic light emitting diodes (OLEDs). Combining the rigidity of the conjugated emissive cores and the flexibility of the peripheral alkyl-linked carbazole groups, two series of highly efficient bipolar RGB (red, green, blue) emitters have been synthesized and characterized. The emissive cores are composed of electron-withdrawing groups; the carbazole groups endow the materials electron-donating units. Such bipolar structures are advantageous for the carrier injection and balance. Four peripheral carbazole groups are introduced in T-series materials (TCDqC, TCSoC, TCBzC, TCNzC), and another four in O-series materials (OCDqC, OCSoC, OCBzC, OCNzC). With the single-layer device configuration of ITO/PEDOT:PSS/emitting layer/CsF/Al, two green devices exhibited excellent performance with a maximum luminescence efficiency of over 6.4 cd A(-1), and a high maximum luminance of more than 6700 cd m(-2). In addition, compared with the T-series, the luminescence efficiency of blue and red devices based on O-series materials increased from 1.6 to 2.8 cd A(-1) and 0.2 to 1.3 cd A(-1), respectively. To our knowledge, the performance of the blue device based on OCSoC is among the best of the blue small-molecule solution-processed single-layer devices reported so far.  相似文献   

2.
《化学:亚洲杂志》2017,12(2):216-223
Self‐host thermally activated delayed fluorescence (TADF) materials have recently been identified as effective emitters for solution‐processed nondoped organic light‐emitting diodes (OLEDs). However, except for the carbazole unit, few novel dendrons have been developed to build self‐host TADF emitters. This study reports two self‐host blue materials, tbCz‐SO and poCz‐SO, with the same TADF emissive core and different dendrons. The influence of the peripheral dendrons on the photophysical properties and electroluminescent performances of the self‐host materials were systematically investigated. The transient fluorescence and electroluminescence spectra indicated that the diphenylphosphoryl carbazole units could effectively encapsulate the emissive core to reduce the concentration quenching effect and to enhance reverse intersystem crossing. By using tbCz‐SO and poCz‐SO as host‐free blue emitters, the performance of the solution‐processed nondoped OLED device demonstrated that a more balanced charge transfer from the bipolar dendrons would offer a better current efficiency of 10.5 cd A−1 and stable color purity with Commission Internationale de L'Eclairage units of (0.18, 0.27).  相似文献   

3.
Aryl‐substituted phenanthroimidazoles (PIs) have attracted tremendous attention in the field of organic light‐emitting diodes (OLEDs), because they are simple to synthesize and have excellent thermal properties, high photoluminescence quantum yields (PLQYs), and bipolar properties. Herein, a novel blue–green emitting material, (E)‐2‐{4′‐[2‐(anthracen‐9‐yl)vinyl]‐[1,1′‐biphenyl]‐4‐yl}‐1‐phenyl‐1H‐phenanthro[9,10‐d]imidazole (APE‐PPI), containing a t‐APE [1‐(9‐anthryl)‐2‐phenylethene] core and a PI moiety was designed and synthesized. Owing to the PI skeleton, APE‐PPI possesses high thermal stability and a high PLQY, and the compound exhibits bipolar transporting characteristics, which were identified by single‐carrier devices. Nondoped blue–green OLEDs with APE‐PPI as the emitting layer show emission at λ=508 nm, a full width at half maximum of 82 nm, a maximum brightness of 9042 cd m?2, a maximum current efficiency of 2.14 cd A?1, and Commission Internationale de L'Eclairage (CIE) coordinates of (0.26, 0.55). Furthermore, a white OLED (WOLED) was fabricated by employing APE‐PPI as the blue–green emitting layer and 4‐(dicyanomethylene)‐2‐tert‐butyl‐6‐(1,1,7,7‐tetramethyljulolidin‐4‐yl‐vinyl)‐4H‐pyran (DCJTB) doped in tris‐(8‐hydroxyquinolinato)aluminum (Alq3) as the red–green emitting layer. This WOLED exhibited a maximum brightness of 10029 cd m?2, a maximum current efficiency of 16.05 cd A?1, CIE coordinates of (0.47, 0.47), and a color rendering index (CRI) of 85. The high performance of APE‐PPI‐based devices suggests that the t‐APE and PI combination can potentially be used to synthesize efficient electroluminescent materials for WOLEDs.  相似文献   

4.
A novel silicon‐based compound, 10‐phenyl‐2′‐(triphenylsilyl)‐10H‐spiro[acridine‐9,9′‐fluorene] (SSTF), with spiro structure has been designed, synthesized, and characterized. Its thermal, electronic absorption, and photoluminescence properties were studied. Its energy levels make it suitable as a host material or exciton‐blocking material in blue phosphorescent organic light‐emitting diodes (PhOLEDs). Accordingly, blue‐emitting devices with iridium(III) bis[(4,6‐difluorophenyl)‐pyridinato‐N,C2′]picolinate (FIrpic) as phosphorescent dopant have been fabricated and show high efficiency with low roll‐off. In particular, 44.0 cd A?1 (41.3 lm W?1) at 100 cd m?2 and 41.9 cd A?1 (32.9 lm W?1) at 1000 cd m?2 were achieved when SSTF was used as host material; 28.1 lm W?1 at 100 cd m?2 and 20.6 lm W?1 at 1000 cd m?2 were achieved when SSTF was used as exciton‐blocking layer. All of the results are superior to those of the reference devices and show the potential applicability and versatility of SSTF in blue PhOLEDs.  相似文献   

5.
A new class of sky‐blue‐ to green‐emitting carbazolylgold(III) C^C^N complexes containing pyrazole or benzimidazole moieties has been successfully designed and synthesized. Through the judicious choice of the N‐heterocycles in the cyclometalating ligand and the tailor‐made carbazole moieties, maximum photoluminescence quantum yields of 0.52 and 0.39 have been realized in the green‐ and sky‐blue‐emitting complexes, respectively. Solution‐processed and vacuum‐deposited organic light‐emitting devices (OLEDs) based on the benzimidazole‐containing complexes have been prepared. The sky‐blue‐emitting device shows an emission peaking at 484 nm with a narrow full‐width at half‐maximum of 57 nm (2244 cm?1), demonstrating the potential of this class of complexes in the application of OLEDs with high color purity. In addition, high maximum external quantum efficiencies of 12.3 % and a long operational half‐lifetime of over 5300 h at 100 cd m?2 have been achieved in the vacuum‐deposited green‐emitting devices.  相似文献   

6.
Multifunctional donor–acceptor compound 4,4′‐bis(dibenzothiophene‐S,S‐dioxide‐2‐yl)triphenylamine ( DSTPA ) was obtained by linking a strongly electron‐withdrawing core and a strongly electron‐donating core with a biphenyl bridge in linear spatial alignment. DSTPA not only has suitable HOMO and LUMO levels for easily accepting both holes and electrons, it was also demonstrated to have a high fluorescence quantum yield of 0.98 and a high triplet energy level of 2.39 eV. Versatile applications of DSTPA for bipolar transport, green fluorescent emission, and sensitizing a red phosphor were systematically investigated in a series of multi‐ and single‐layer organic light‐emitting devices. In traditional multilayer devices, it shows excellent performance both in an undoped fluorescent device (used as a green emitter and achieving maximum current and power efficiencies (CE and PE) of 12.6 cd A?1 and 9.4 Lm W?1, respectively) and in a red phosphorescent device (used as a host and achieving maximum CE and PE of 26.4 cd A?1 and 26.3 Lm W?1, respectively). Furthermore, DSTPA was also simultaneously used as an emitter, a hole transporter, and an electron transporter in a single‐layer device showing CE and PE of 5.1 cd A?1 and 4.7 Lm W?1, respectively. A single‐layer red phosphorescent device with efficiencies of 11.7 cd A?1 and 12.6 Lm W?1 was obtained by doping DSTPA with a red phosphor. The performances of all of the devices in this work are comparable to the best of their corresponding classes in the literature.  相似文献   

7.
Two new molecules, CzFCBI and CzFNBI , have been tailor‐made to serve as bipolar host materials to realize high‐efficiency electrophosphorescent devices. The molecular design is configured with carbazole as the hole‐transporting block and N‐phenylbenzimidazole as the electron‐transporting block hybridized through the saturated bridge center (C9) and meta‐conjugation site (C3) of fluorene, respectively. With structural topology tuning of the connecting manner between N‐phenylbenzimidazole and the fluorene core, the resulting physical properties can be subtly modulated. Bipolar host CzFCBI with a C connectivity between phenylbenzimidazole and the fluorene bridge exhibited extended π conjugation; therefore, a low triplet energy of 2.52 eV was observed, which is insufficient to confine blue phosphorescence. However, the monochromatic devices indicate that the matched energy‐level alignment allows CzFCBI to outperform its N‐connected counterpart CzFNBI while employing other long‐wavelength‐emitting phosphorescent guests. In contrast, the high triplet energy (2.72 eV) of CzFNBI imparted by the N connectivity ensures its utilization as a universal bipolar host for blue‐to‐red phosphors. With a common device configuration, CzFNBI has been utilized to achieve highly efficient and low‐roll‐off devices with external quantum efficiency as high as 14 % blue, 17.8 % green, 16.6 % yellowish‐green, 19.5 % yellow, and 18.6 % red. In addition, by combining yellowish‐green with a sky‐blue emitter and a red emitter, a CzFNBI ‐hosted single‐emitting‐layer all‐phosphor three‐color‐based white electrophosphorescent device was successfully achieved with high efficiencies (18.4 %, 36.3 cd A?1, 28.3 lm W?1) and highly stable chromaticity (CIE x=0.43–0.46 and CIE y=0.43) at an applied voltage of 8 to 12 V, and a high color‐rendering index of 91.6.  相似文献   

8.
Two novel copoly(p‐phenylene)s ( P1 – P2 ) containing bipolar groups (12.8 and 6.8 mol %, respectively), directly linked hole transporting triphenylamine and electron transporting aromatic 1,2,4‐triazole, were synthesized to enhance electroluminescence (EL) of poly(p‐phenylene vinylene) (PPV) derivatives. The bipolar groups not only enhance thermal stability but also promote electron affinity and hole affinity of the resulting copoly(p‐phenylene)s. Blending the bipolar copoly‐(p‐phenylene)s ( P1 – P2 ) with PPV derivatives ( d6‐PPV ) as an emitting layer effectively improve the emission efficiency of its electroluminescent devices [indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene) (PEDOT):poly(styrenesulfonate) (PSS)/polymer blend/Ca (50 nm)/Al (100 nm)]. The maximum luminance and maximum luminance efficiency were significantly enhanced from 310 cd m?2 and 0.03 cd A?1 ( d6‐PPV ‐based device) to 1450 cd m?2 and 0.20 cd A?1 (blend device with d6‐PPV / P1 = 96/4 containing ~0.5 wt % of bipolar groups), respectively. Our results demonstrate the efficacy of the copoly(p‐phenylene)s with bipolar groups in enhancing EL of PPV derivatives. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

9.
To study the influence of a blue‐emitting iridium complex pendant on the optoelectronic properties of its 2,7‐polyfluorene (PF) derivatives with the carbazole and oxadiazole pendants, a class of 2,7‐PF derivatives containing carbazole, oxadiazole, and/without the cyclometalated iridium complex pendants in the C‐9 positions of fluorene unit were synthesized. Their thermal, photophysical, electrochemical, and electroluminescent (EL) properties were investigated. Among these 2,7‐PF derivatives (P 1 –P 4 ), P 2 and P 3 exhibited higher photoluminescence efficiency in dichloromethane and better EL properties in the single‐emissive‐layer polymer light‐emitting devices. The highest brightness of 3888 cd/m2 and the maximum current efficiency of 2.9 cd/A were obtained in the P 2 ‐ and P 3 ‐based devices, respectively. The maximum brightness and efficiency levels were 1.7 and 2.1 times, respectively, higher than the corresponding levels from the parent 2,7‐PF derivative (P 1 )‐based devices. Our work indicated that EL properties of 2,7‐PF derivatives can be improved by introducing the blue‐emitting iridium complex into the alkyl side chain of fluorine unit as pendant. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
A blue fluorescent polymer based on poly(vinyl carbazole) (PVK) and terfluorene, combined to make a chemical hybrid at the carbazole unit (PVK‐TF), is fully characterized in this study. PVK‐TF shows useful emission features, such as peaks at 400, 420, 437, 460, and 496 nm, depending on the processing conditions. It possesses a relatively high triplet energy level (2.23 eV), electrochemical stability, good film‐forming ability, and morphological stability. Based on this blue fluorescent material, highly efficient orange phosphorescent polymer light‐emitting diodes (PLEDs) were fabricated with a maximum efficiency of 21.99 cd A?1, and a maximum luminance of 19552.3 cd m?2. Single‐layer hybrid white PLEDs were developed, with a high color rendering index of 81.9 that emitted across the whole visible spectrum from 380 to 780 nm, corresponding to the Commission International de L'Eclairage coordinates x, y values of around (0.38, 0.40) and CCT = 3774, with a maximum current efficiency of 10.69 cd A?1, and a maximum brightness of 15723.3 cd m?2. © 2014 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 587–595  相似文献   

11.
By combining the iridium(III) ppy‐type complex (Hppy=2‐phenylpyridine) with a square‐planar platinum(II) unit, some novel phosphorescent oligometallaynes bearing dual metal centers (viz. IrIII and PtII) were developed by combining trans‐[Pt(PBu3)2Cl2] with metalloligands of iridium possessing bifunctional pendant acetylene groups. Photophysical and computational studies indicated that the phosphorescent excited states arising from these oligometallaynes can be ascribed to the triplet emissive IrIII ppy‐type chromophore, owing to the obvious trait (such as the longer phosphorescent lifetime at 77 K) also conferred by the PtII center. So, the two different metal centers show a synergistic effect in governing the photophysical behavior of these heterometallic oligometallaynes. The inherent nature of these amorphous materials renders the fabrication of simple solution‐processed doped phosphorescent organic light‐emitting diodes (PHOLEDs) feasible by effectively blocking the close‐packing of the host molecules. Saliently, such a synergistic effect is also important in affording decent device performance for the solution‐processed PHOLEDs. A maximum brightness of 3 356 cd m?2 (or 2 708 cd m?2), external quantum efficiency of 0.50 % (or 0.67 %), luminance efficiency of 1.59 cd A?1 (or 1.55 cd A?1), and power efficiency of 0.60 Lm W?1 (or 0.55 Lm W?1) for the yellow (or orange) phosphorescent PHOLEDs can be obtained. These results show the great potential of these bimetallic emitters for organic light‐emitting diodes.  相似文献   

12.
We report novel host polymers for a high‐efficiency polymer‐based solution‐processed phosphorescent organic light‐emitting diode with typical blue‐emitting dopant bis(4,6‐difluorophenylpyridinato‐N,C2)iridium(III) picolinate (FIrpic). The host polymers, soluble polynorbornenes with pendant carbazole derivatives, N‐phenyl‐9H‐carbazole ( P1 ), N‐biphenyl‐9H‐carbazole ( P2 ), and 9,9′‐(1,3‐phenylene)bis‐9H‐carbazole (mCP) ( P3 ) are efficiently synthesized by vinyl addition polymerization of norbornene monomers using Pd(II) catalyst in combination with 1‐octene chain transfer agent. The polymers exhibit high thermal stability with high decomposition (Td5 > 410 °C) and glass transition temperatures (Tg ≈ 268 °C). The HOMO (ca. ?5.5 to ?5.7 eV) and LUMO (ca. ?2.0 to ?2.1 eV) levels with the high triplet energy of about 2.7–3.0 eV suggest that the polymers are suitable for a host material for blue emitters. Among the solution‐processed devices that were fabricated based on the emissive layers containing the P1 ? P3 host doped with various concentrations of FIrpic (7–13 wt %), the best device with P3 host exhibits power efficiency of 3.0 lm W?1 and external quantum efficiency of 4.0% at a luminance of 1000 cd m?2 that is outstanding among the polymeric rivals. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
The development of efficient blue materials has been a continuous research topic in the field of organic light‐emitting diodes (OLEDs). In this paper, three aggregation‐induced emission enhancement active blue emitters, PIAnTPE, TPAAnTPE and CzAnTPE, are successfully synthesized by attaching a triphenylethylene unit and phenanthroimidazole/triphenylamine/carbazole moieties to the 9,10‐positions of anthracene, respectively. The three compounds exhibit good thermal stabilities, appropriate for the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels and display high photoluminescence quantum yields (PLQYs) of 65, 70 and 46 % in the solid state. Non‐doped blue devices using PIAnTPE, TPAAnTPE and CzAnTPE as the emitting layers show good electroluminescent performances, with the maximum external quantum efficiencies (EQEs) of 4.46, 4.13 and 4.04 %, respectively. More importantly, EQEs of all the three devices can be still retained when the luminescence reaches 1000 cd m?2, exhibiting quite small efficiency roll‐offs in the non‐doped OLEDs.  相似文献   

14.
A blue‐emitting iridium dendrimer, namely B‐G2 , has been successfully designed and synthesized with a second‐generation oligocarbazole as the dendron, which is covalently attached to the emissive tris[2‐(2,4‐difluorophenyl)‐pyridyl]iridium(III) core through a nonconjugated link to form an efficient self‐host system in one dendrimer. Unlike small molecular phosphors and other phosphorescent dendrimers, B‐G2 shows a continuous enhancement in the device efficiency with increasing doping concentration. When using neat B‐G2 as the emitting layer, the nondoped device is achieved without loss in efficiency, thus giving a state‐of‐art EQE as high as 15.3 % (31.3 cd A?1, 28.9 lm W?1) along with CIE coordinates of (0.16, 0.29).  相似文献   

15.
Donor–acceptor (D–A) molecular architecture has been shown to be an effective strategy for obtaining high‐performance electroluminescent materials. In this work, two D–A molecules, Ph‐BPA‐BPI and Py‐BPA‐BPI, have been synthesized by attaching highly fluorescent phenanthrene or pyrene groups to the C6‐ and C9‐positions of a locally excited‐state emitting phenylamine–phenanthroimidazole moiety. Equipped with good physical and hybridized local and charge‐transfer properties, both molecules show high performances as blue emitters in nondoped organic light‐emitting devices (OLEDs). An OLED using Ph‐BPA‐BPI as the emitting layer exhibits deep‐blue emission with CIE coordinates of (0.15, 0.08), and a maximum external quantum efficiency (EQE), current efficiency (CE), and power efficiency (PE) of 4.56 %, 3.60 cd A?1, and 3.66 lm W?1, respectively. On the other hand, a Py‐BPA‐BPI‐based, sky‐blue OLED delivers the best results among nondoped OLEDs with CIEy values of < 0.3 reported so far, for which a very low turn‐on voltage of 2.15 V, CIE coordinates of (0.17, 0.29), and maximum CE, PE, and EQE values of 10.9 cd A?1, 10.5 lm W?1, and 5.64 %, were achieved, respectively. More importantly, both devices show little or even no efficiency roll‐off and high singlet exciton‐utilizing efficiencies of 36.2 % for Ph‐BPA‐BPI and 39.2 % for Py‐BPA‐BPI.  相似文献   

16.
Two phosphorescent dinuclear iridium(III) diastereomers (ΛΔ/ΔΛ) and (ΛΛ/ΔΔ) are readily separated by making use of their different solubilities in hot hexane. The bridging diarylhydrazide ligand plays an important role in the electrochemistry and photophysics of the complexes. Organic light‐emitting devices (OLEDs) that use these complexes as the green‐emissive dopants in solution‐processable single‐active‐layer architectures feature electroluminescence efficiencies that are remarkably high for dinuclear metal complexes, achieving maximum values of 37 cd A?1, 14 lm W?1, and 11 % external quantum efficiency.  相似文献   

17.
A new carbazole–fluorenyl hybrid compound, 3,3′(2,7‐di(naphthaline‐2‐yl)‐9H‐fluorene‐9,9‐diyl)bis(9‐phenyl‐9H‐carbazole) (NFBC) was synthesized and characterized. The compound exhibits blue‐violet emission both in solution and in film, with peaks centered at 404 and 420 nm. In addition to the application as a blue emitter, NFBC is demonstrated to be a good host for phosphorescent dopants. By doping Ir(2‐phq)3 in NFBC, a highly efficient orange organic light‐emitting diode (OLED) with a maximum efficiency of 32 cd A?1 (26.5 Lm W?1) was obtained. Unlike most phosphorescent OLEDs, the device prepared in our study shows little efficiency roll‐off at high brightness and maintains current efficiencies of 31.9 and 26.8 cd A?1 at a luminance of 1000 and 10 000 cd m?2, respectively. By using NFBC simultaneously as a blue fluorescence emitter and as a host for a phosphorescent dopant, a warm white OLED with a maximum efficiency of 22.9 Lm W?1 (21.9 cd A?1) was also obtained.  相似文献   

18.
Novel photo‐crosslinkable hole‐transport and host materials incorporated into multilayer blue phosphorescent polymer light‐emitting diodes (Ph‐PLEDs) were demonstrated in this study. The oxetane‐containing copolymers, which function as hole‐transport layers (HTL), could be cured by UV irradiation in the presence of a cationic photoinitiator. The composition of the two monomers was varied to yield three different hole‐transporting copolymers, [Poly(9,9′‐(5‐(((4‐(7‐(4‐(((3‐methyloxetan‐3‐yl)methoxy)methyl)phenyl)octan‐3‐yl)benzyl)oxy)methyl)?1,3‐phenylene)bis(9H‐carbazole)) ( P(mCP‐Ox)‐I , ‐II , and ‐III )]. In addition, monomer 1 was copolymerized with styrene to produce copolymer P(mCP‐Ph) as a host material for bis[2‐(4,6‐difluorophenyl)pyridinato‐C2,N](picolinato)iridium(III) (FIrpic), a blue‐emitting dopant. All mCP‐based copolymers displayed high glass transition temperatures (Tg) of up to 130–140 °C and triplet energies of up to 3.00 eV. The blue Ph‐PLEDs exhibited a maximum external quantum efficiency of 2.55%, in addition to a luminous efficiency of 8.75 cd A?1 when using the device configuration of indium tin oxide/poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate)/ P(mCP‐OX)‐III / P(mCP‐Ph) :FIrpic(15 wt %)/3,3′‐[5′‐[3‐(3‐pyridinyl)phenyl][1,1′:3′,1′′‐terphenyl]‐3,3′′‐diyl]bispyridine/LiF/Al. The device bearing P(mCP‐Ox)‐III HTL, containing the highest composition of mCP unit, exhibited better performance than the other devices, which is attributed to induction of more balanced charge carriers and carrier recombination in the emissive layer. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 707–718  相似文献   

19.
A new class of four‐coordinate donor‐acceptor fluoroboron‐containing thermally activated delayed fluorescence (TADF) compounds bearing a tridentate 2,2′‐(pyridine‐2,6‐diyl)diphenolate (dppy) ligand has been successfully designed and synthesized. Upon varying the donor moieties from carbazole to 10H‐spiro[acridine‐9,9′‐fluorene] to 9,9‐dimethyl‐9,10‐dihydroacridine, these boron derivatives exhibit a wide range of emission colors spanning from blue to yellow with a large spectral shift of 2746 cm?1, with high PLQYs of up to 96 % in the doped thin film. Notably, vacuum‐deposited organic light‐emitting devices (OLEDs) made with these boron compounds demonstrate high performances with the best current efficiencies of 55.7 cd A?1, power efficiencies of 58.4 lm W?1 and external quantum efficiencies of 18.0 %. More importantly, long operational stabilities of the green‐emitting OLEDs based on 2 with half‐lifetimes of up to 12 733 hours at an initial luminance of 100 cd m?2 have been realized. This work represents for the first time the design and synthesis of tridentate dppy‐chelating four‐coordinate boron TADF compounds for long operational stabilities, suggesting great promises for the development of stable boron‐containing TADF emitters.  相似文献   

20.
Formylphenyl has been demonstrated to act as an acceptor to construct thermally activated delayed fluorescence (TADF) emitter, and therefore a series of the TADF‐conjugated polymers with formylphenyl as pendant acceptor and carbazole/acridine as backbone donor are designed and synthesized. All polymers involve the twisted donor/acceptor structural moieties with the sufficiently spatial separation between the highest occupied molecular orbital and the lowest unoccupied molecular orbital as well as a small singlet/triplet splitting, and exhibit the legible TADF features confirmed by theoretical calculation and their transient decay spectra. The solution‐processed organic light‐emitting diodes using neat film of the polymers as emissive layer achieve excellent performance with the maximum external quantum efficiency (EQE) of up to 10.6%, the maximum current efficiency of up to 35.3 cd A−1 and the low turn‐on voltage of 2.7 V. Moreover, the EQE still remains 10.3% at the luminance of 1000 cd m−2 with the low driving voltage of 4.4 V and extremely small efficiency roll‐off. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1989–1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号