首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Heteronuclear NMR spectroscopy provides a unique way to obtain site-specific information about protein-ligand interactions. Usually, such studies rely on the availability of isotopically labeled proteins, thereby allowing both editing of the spectra and ligand signals to be filtered out. Herein, we report that the use of the methyl SOFAST correlation experiment enables the determination of site-specific equilibrium binding constants by using unlabeled proteins. By using the binding of L- and D-tryptophan to serum albumin as a test case, we determined very accurate dissociation constants for both the high- and low-affinity sites present at the protein surface. The values of site-specific dissociation constants were closer to those obtained by isothermal titration calorimetry than those obtained from ligand-observed methods, such as saturation transfer difference. The possibility of measuring ligand binding to serum albumin at physiological concentrations with unlabeled proteins may open up new perspectives in the field of drug discovery.  相似文献   

2.
The direct evaluation of dissociation constants (KD) from the variation of saturation transfer difference (STD) NMR spectroscopy values with the receptor–ligand ratio is not feasible due to the complex dependence of STD intensities on the spectral properties of the observed signals. Indirect evaluation, by competition experiments, allows the determination of KD, as long as a ligand of known affinity is available for the protein under study. Herein, we present a novel protocol based on STD NMR spectroscopy for the direct measurements of receptor–ligand dissociation constants (KD) from single‐ligand titration experiments. The influence of several experimental factors on STD values has been studied in detail, confirming the marked impact on standard determinations of protein–ligand affinities by STD NMR spectroscopy. These factors, namely, STD saturation time, ligand residence time in the complex, and the intensity of the signal, affect the accumulation of saturation in the free ligand by processes closely related to fast protein–ligand rebinding and longitudinal relaxation of the ligand signals. The proposed method avoids the dependence of the magnitudes of ligand STD signals at a given saturation time on spurious factors by constructing the binding isotherms using the initial growth rates of the STD amplification factors, in a similar way to the use of NOE growing rates to estimate cross relaxation rates for distance evaluations. Herein, it is demonstrated that the effects of these factors are cancelled out by analyzing the protein–ligand association curve using STD values at the limit of zero saturation time, when virtually no ligand rebinding or relaxation takes place. The approach is validated for two well‐studied protein–ligand systems: the binding of the saccharides GlcNAc and GlcNAcβ1,4GlcNAc (chitobiose) to the wheat germ agglutinin (WGA) lectin, and the interaction of the amino acid L ‐tryptophan to bovine serum albumin (BSA). In all cases, the experimental KD measured under different experimental conditions converged to the thermodynamic values. The proposed protocol allows accurate determinations of protein–ligand dissociation constants, extending the applicability of the STD NMR spectroscopy for affinity measurements, which is of particular relevance for those proteins for which a ligand of known affinity is not available.  相似文献   

3.
A single high‐affinity fatty acid binding site in the important human transport protein serum albumin (HSA) is identified and characterized using an NBD (7‐nitrobenz‐2‐oxa‐1,3‐diazol‐4‐yl)‐C12 fatty acid. This ligand exhibits a 1:1 binding stoichiometry in its HSA complex with high site‐specificity. The complex dissociation constant is determined by titration experiments as well as radioactive equilibrium dialysis. Competition experiments with the known HSA‐binding drugs warfarin and ibuprofen confirm the new binding site to be different from Sudlow‐sites I and II. These binding studies are extended to other albumin binders and fatty acid derivatives. Furthermore an X‐ray crystal structure allows locating the binding site in HSA subdomain IIA. The knowledge about this novel HSA site will be important for drug depot development and for understanding drug‐protein interaction, which are important prerequisites for modulation of drug pharmacokinetics.  相似文献   

4.
Kinetics of binding of dyes at different sites of human serum albumin (HSA) has been studied by single‐molecule spectroscopy. The protein was immobilized on a glass surface. To probe different binding sites (hydrophobic and hydrophilic) two dyes, coumarin 153 ( C153 , neutral) and rhodamine 6G ( R6G , cationic) were chosen. For both the dyes, a major (ca. 96‐98 %) and minor (ca. 3 %) binding site were detected. Rate constants of association and dissociation were simultaneously determined from directly measuring fluctuations in fluorescence intensity (τoff and τon) and from this the equilibrium (binding) constants were calculated. Fluorescence lifetimes at individual sites were obtained from burst‐integrated lifetime analysis. Distributions of lifetime histograms for both the probes ( C153 and R6G ) exhibit two maxima, which indicates the presence of two binding domains in the protein. Unfolding of the protein has been studied by adding guanidinium hydrochloride (GdnHCl) to the solution. It is observed that addition of GdnHCl affects the dissociation and association kinetics and hence, binding equilibrium of the association of C153 . However, the effect of binding of R6G is not affected much. It is proposed that GdnHCl affects the hydrophobic binding sites more than the hydrophilic site.  相似文献   

5.
The interactions between riboflavin (RF) and human and bovine serum albumin (HSA and BSA) were studied by using absorption and fluorescence spectroscopic methods. Intrinsic fluorescence emission spectra of serum albumin in the presence of RF show that the endogenous photosensitizer acts as a quencher. The decrease of fluorescence intensity at about 350 nm is attributed to changes in the environment of the protein fluorophores caused by the ligand. The quenching mechanisms of albumins by RF were discussed. The binding constants and binding site number were obtained at various temperatures. The distance between albumins and RF in the complexes suggests that the primary binding site for RF is close to tryptophan residue (Trp214) of HSA and Trp212 of BSA. The hydration process of albumins has also been discussed.  相似文献   

6.
Coarse‐grained molecular dynamics (CGMD) simulations with the MARTINI force field were performed to reproduce the protein–ligand binding processes. We chose two protein–ligand systems, the levansucrase–sugar (glucose or sucrose), and LinB–1,2‐dichloroethane systems, as target systems that differ in terms of the size and shape of the ligand‐binding pocket and the physicochemical properties of the pocket and the ligand. Spatial distributions of the Coarse‐grained (CG) ligand molecules revealed potential ligand‐binding sites on the protein surfaces other than the real ligand‐binding sites. The ligands bound most strongly to the real ligand‐binding sites. The binding and unbinding rate constants obtained from the CGMD simulation of the levansucrase–sucrose system were approximately 10 times greater than the experimental values; this is mainly due to faster diffusion of the CG ligand in the CG water model. We could obtain dissociation constants close to the experimental values for both systems. Analysis of the ligand fluxes demonstrated that the CG ligand molecules entered the ligand‐binding pockets through specific pathways. The ligands tended to move through grooves on the protein surface. Thus, the CGMD simulations produced reasonable results for the two different systems overall and are useful for studying the protein–ligand binding processes. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
The recombinantly produced different forms of protein G, namely monofunctional immunoglobulin G (IgG) binding, monofunctional serum albumin (SA) binding and bifunctional IgG/SA binding proteins G, are compared with respect to their specific affinities to blood IgG and SA. The affinity mode of the recently developed high-performance monolithic disk chromatography has been used for fast quantitative investigations. Using single affinity disks as well as two discs stacked into one separation unit, one order of magnitude in adsorption capacities for IgG and SA were found both for monofunctional and bifunctional protein G forms used as specific affinity ligands. However, despite the adsorption difference observed, the measured dissociation constants of the affinity complexes seemed to be very close. The analytical procedure developed can be realized within a couple of minutes. Up-scaling of the developed technology was carried out using another type of monolithic materials, i.e. CIM affinity tubes.  相似文献   

8.
9.
Garnier F  Randon J  Rocca JL 《Talanta》2000,51(5):1001-1007
The binding of d- and l-tryptophan molecules to bovine serum albumin (BSA) protein has been studied using liquid chromatography and ultrafiltration in the pH range from 7 to 11. A hydrophobic interaction between tryptophan and BSA has been observed at pH 7.0 on BSA grafted chromatographic column. However, this interaction is negligible at higher pH for which the interaction to the stereospecific site was predominant. For both grafted and free proteins, the complexation mechanism was a competitive binding of d- and l-enantiomers on a single site. The apparent complexation constants for both d- and l-tryptophan show a maximum in the pH range 9-10. The variations of the apparent complexation constants versus pH were the result of the protonation of both the amino acid and a single site of the protein assuming that the complexation occurs between the zwitter-ionic amino acid form and the unprotonated BSA site. The apparent pK(BSA) is slightly shifted from 8.3 for grafted BSA protein to 9.4 for free BSA protein. This shift is presumably as a result of the different protein conformation.  相似文献   

10.
The interaction between N‐(4‐ethoxyphenyl)‐N′‐(4‐antipyrinyl)thiourea (EPAT) and bovine serum albumin (BSA) was studied by fluorescence spectroscopy in combination with UV absorption spectroscopy. The intrinsic fluorescence of bovine serum albumin was quenched by EPAT through a static quenching procedure. The binding constants of EPAT with BSA were estimated according to the fluorescence quenching results at different temperatures. The thermodynamic parameters: enthalpy change (ΔH) and entropy change (ΔS) were calculated to be ?10.69 kJ/mol and 42.64 J·mol?1·K?1 according to thermodynamic equations, respectively, and indicating that the binding force was suggested to be mainly a hydrophobic force. The effect of common ions on the binding constant was also investigated. A new fluorescence spectroscopy assay of the proteins was presented in this paper. The determination results of the proteins in bovine serum by means of this method were very close to those obtained using Coomassie Brilliant Blue G‐250 colorimetry.  相似文献   

11.
《Analytical letters》2012,45(10):1663-1675
Abstract

Solid-phase displacement assays allow extremely fast analyses when performed under continuous flow conditions. Continuous dissociation of labeled antigen from the immobilized saturated antibodies occurs even in the absence of competing unlabeled antigen. This spontaneous dissociation creates more unoccupied antibody binding sites which affect the magnitude of the signal generated. In order to evaluate the impact of this phenomenon in more detail, we extended the law of mass action to solid-phase binding assays and analyzed the dissociation kinetics of labeled antigen under continuous flow conditions. The effect of the flow on the dissociation kinetics was determined by calculation of the apparent dissociation rate constants (kd) which increase with an increase in the flow rate. These dissociation rate constants are approximately 20- to 30-fold lower than those obtained from displacement studies (i.e., in the presence of competing unlabeled antigen). The difference in the dissociation rate constants obtained in the two studies is most likely a function of the degree of reassociation. The results of this study provide a basis for better understanding antibody kinetics at solid-liquid interfaces under flow conditions.  相似文献   

12.
A method to separate specific and nonspecific noncovalent interactions observed in ESI mass spectra between a protein and its ligands is presented. Assuming noncooperative binding, the specific ligand binding is modeled as a statistical distribution on identical binding sites. For the nonspecific fraction we assume a statistical distribution on a large number of "nonspecific" interacting sites. The model was successfully applied to the noncovalent interaction between the protein creatine kinase (CK) and its ligands adenosine diphosphate (ADP) and adenosine triphosphate (ATP) that both exhibit nonspecific binding in the mass spectrum. The two sequential dissociation constants obtained by applying our method are K(1,diss) = 11.8 +/- 1.5 microM and K(2,diss) = 48 +/- 6 microM for ADP. For ATP, the constants are K(1,diss) = 27 +/- 7 microM and K(2,diss) = 114 +/- 27 microM. All constants are in good correlation with reported literature values. The model should be valuable for systems with a large dissociation constant that require high ligand concentrations and thus have increased potential of forming nonspecific adducts.  相似文献   

13.
采用紫外分光光度法,在225 nm与305 nm波长处测得泛昔洛韦的解离常数pKa均为3.8.在含有泛昔洛韦的pH值为7.0的Na2HPO4-KH2PO4缓冲溶液中加入牛血清白蛋白,以双倒数公式法测定二者的结合常数.结果表明,牛血清白蛋白与泛昔洛韦形成了1∶4的配合物,其结合常数是4.51×106 L/mol.方法简便,结果可靠。  相似文献   

14.
Ligands that have an affinity for protein targets can be screened very effectively by exploiting favorable properties of long‐lived states (LLS) in NMR spectroscopy. In this work, we describe the use of LLS for competitive binding experiments to measure accurate dissociation constants of fragments that bind weakly to the ATP binding site of the N‐terminal ATPase domain of heat shock protein 90 (Hsp90), a therapeutic target for cancer treatment. The LLS approach allows one to characterize ligands with an exceptionally wide range of affinities, since it can be used for ligand concentrations [L] that are several orders of magnitude smaller than the dissociation constants KD. This property makes the LLS method particularly attractive for the initial steps of fragment‐based drug screening, where small molecular fragments that bind weakly to a target protein must be identified, which is a difficult task for many other biophysical methods.  相似文献   

15.
Investigation of protein–ligand interactions is crucial during early drug‐discovery processes. ATR‐FTIR spectroscopy can detect label‐free protein–ligand interactions with high spatiotemporal resolution. Here we immobilized, as an example, the heat shock protein HSP90 on an ATR crystal. This protein is an important molecular target for drugs against several diseases including cancer. With our novel approach we investigated a ligand‐induced secondary structural change. Two specific binding modes of 19 drug‐like compounds were analyzed. Different binding modes can lead to different efficacy and specificity of different drugs. In addition, the kobs values of ligand dissociation were obtained. The results were validated by X‐ray crystallography for the structural change and by SPR experiments for the dissociation kinetics, but our method yields all data in a single and simple experiment.  相似文献   

16.
The determination of dissociation constands (K(d)) by competitive ligand binding in partial filling capillary electrophoresis is demonstrated. Two different strategies were applied, one of which only uses a single reporter ligand and a more elaborated one which suppresses systemic disturbances by using a racemic mixture as reporter. The dissociation constants obtained by both alternatives were virtually identical and in good agreement with those previously reported.  相似文献   

17.
Peak profiling and high-performance columns containing immobilized human serum albumin (HSA) were used to study the interaction kinetics of chiral solutes with this protein. This approach was tested using the phenytoin metabolites 5-(3-hydroxyphenyl)-5-phenylhydantoin (m-HPPH) and 5-(4-hydroxyphenyl)-5-phenylhydantoin (p-HPPH) as model analytes. HSA columns provided some resolution of the enantiomers for each phenytoin metabolite, which made it possible to simultaneously conduct kinetic studies on each chiral form. The dissociation rate constants for these interactions were determined by using both the single flow rate and multiple flow rate peak profiling methods. Corrections for non-specific interactions with the support were also considered. The final estimates obtained at pH 7.4 and 37°C for the dissociation rate constants of these interactions were 8.2-9.6 s(-1) for the two enantiomers of m-HPPH and 3.2-4.1 s(-1) for the enantiomers of p-HPPH. These rate constants agreed with previous values that have been reported for other drugs and solutes that have similar affinities and binding regions on HSA. The approach used in this report was not limited to phenytoin metabolites or HSA but could be applied to a variety of other chiral solutes and proteins. This method could also be adopted for use in the rapid screening of drug-protein interactions.  相似文献   

18.
Ligand-induced cross-linking of cell surface receptors is a basic paradigm of signal activation by many transmembrane receptors. After ligand binding, the receptor complexes formed on the membrane are dynamically maintained by two-dimensional protein-protein interactions on the membrane. The biophysical principles governing the dynamics of such interactions have not been understood, mainly because the measurement of lateral interactions on membranes so far has not been experimentally addressed. Here, we describe a generic approach for measuring two-dimensional dissociation rate constants in vitro using a novel high-affinity chelator lipid for reconstituting a ternary cytokine-receptor complex on solid-supported membranes. While monitoring the interaction between the ligand and one of the receptor subunits on the membrane by fluorescence resonance energy transfer, the equilibrium on the surface was perturbed by rapidly tethering a large excess of the unlabeled receptor subunit. Displacement of labeled by unlabeled protein in the ternary complex was detected as a recovery of the donor quenching. Since the dissociation of the ligand-receptor complex in plane of the membrane was the rate-limiting step under these conditions, the two-dimensional rate constant of this process was determined. Strikingly, the two-dimensional dissociation was much slower than ligand dissociation into solution, suggesting that membrane tethering significantly affects the dissociation process. This result highlights the importance of studying ligand-receptor complexes tethered to membranes for understanding the principles governing signal activation by ligand-induced receptor assembling.  相似文献   

19.
刘媛  龙梅  谢孟峡 《物理化学学报》2013,29(12):2647-2654
采用多种光谱学手段研究了白杨素(CHR)和不同构型人血清白蛋白(HSA)相互作用的分子机制.研究表明,白杨素能使蛋白质荧光发射峰发生静态淬灭,同时,白杨素的紫外吸收谱带也发生了明显的位移,说明与蛋白质的结合可使白杨素分子中的酚羟基发生解离.蛋白质还可以引起白杨素荧光发射峰强度的明显增强.利用荧光淬灭和荧光增强两种模式计算得到的白杨素和人血清白蛋白在生理条件下(pH 7.4)的结合常数(KA)分别为(9.97±0.24)×104和(9.75±0.11)×104L mol-1,其结合比例为1:1.随着pH值的降低,蛋白质与白杨素的结合常数逐渐减小,这与蛋白质的构型变化有关.根据不同异构体血清蛋白质的结构特征,判定白杨素在蛋白质分子上的结合位置位于IIA亚域的Site I活性位点.结合分子模拟,讨论了白杨素与蛋白质分子的结合机制.  相似文献   

20.
Hydrophobic affinity electrophoresis under high hydrostatic pressure has been developed to study the interaction between fatty acid-free bovine serum albumin and a long-chain aliphatic ligand physically immobilized within the gel matrix. From apparent association constants at various pressures and temperatures, apparent thermodynamic parameters including the volume change in binding were calculated. The results are as expected for hydrophobic interactions between the long-chain alkyl ligand and a high-affinity long-chain fatty acid binding site. The feasibility of high-pressure affinity electrophoresis is demonstrated. This new high-pressure technique provides a direct means for studying quantitatively the effects of pressure upon protein-ligand interactions. It could become a suitable tool for the investigation of protein binding sites' topography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号