首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Self-assembled, hexarhenium(I), triangular metalloprism compound [{(CO)(3)Re(μ-2)Re(CO)(3)}(3)(μ(3)-1)(2)] (3) featuring three bis-chelating pillarlike indigo dianions (μ-2), each of which connects two fac-Re(CO)(3) cores, which are interconnected by a tritopic N donor, that is, a 2,4,6-tris(4-pyridyl)-1,3,5-triazine (μ(3)-1, tPyTz) ligand, has been synthesized in high yield and characterized. Metalloprism 3 exhibits a strong absorption in the near-infrared (NIR) region. The reversible, multielectron redox properties of the electrogenerated 3(n) species, where n=3+, 0, 3-, 4-, 5-, 8-, in the visible and especially in the NIR region were investigated in THF solution by cyclic voltammetry (CV), chronocoulometry, EPR spectroscopy, and thin-layer UV/Vis/NIR spectroelectrochemistry (SEC). Stepwise, site-specific electrochemical reductions lead to the formation of a series of highly stable ion (radical) species in which electrons associated with μ-2 or μ(3)-1 components of the molecule can be clearly distinguished. An EPR investigation revealed interaction of unpaired electrons with the metal nuclei ((185,187)Re, I=5/2) in the reduced intermediates. The framework has C(2) symmetry, and accidental degeneracies suffice. Detailed theoretical calculations by structure-based DFT confirm that the triply degenerate HOMO has ≥70% indigo character with a sizable dπ-Re character, while the LUMO is dominated by the triply degenerate indigo ligands, and the LUMO+1 by doubly degenerate tPyTz ligands. A comparison of 3 and previously reported 2,2'-bis-benzimidazolate- (BiBzlm) or alkoxy-pillared Re(I) metalloprisms indicates a very low switching potential with a potential window of less than 1?V and reversibly accessible optical properties with higher stability of the intermediates. The properties exhibited by 3 appear to be due to the slight tuning of the bridging ligand from N,N(-) to N,O(-).  相似文献   

2.
Triply‐bridging bis‐{hydrido(borylene)} and bis‐borylene species of groups 6, 8 and 9 transition metals are reported. Mild thermolysis of [Fe2(CO)9] with an in situ produced intermediate, generated from the low‐temperature reaction of [Cp*WCl4] (Cp*=η5‐C5Me5) and [LiBH4?THF] afforded triply‐bridging bis‐{hydrido(borylene)}, [(μ3‐BH)2H2{Cp*W(CO)2}2{Fe(CO)2}] ( 1 ) and bis‐borylene, [(μ3‐BH)2{Cp*W(CO)2}2{Fe(CO)3}] ( 2 ). The chemical bonding analyses of 1 show that the B?H interactions in bis‐{hydrido (borylene)} species is stronger as compared to the M?H ones. Frontier molecular orbital analysis shows a significantly larger energy gap between the HOMO‐LUMO for 2 as compared to 1 . In an attempt to synthesize the ruthenium analogue of 1 , a similar reaction has been performed with [Ru3(CO)12]. Although we failed to get the bis‐{hydrido(borylene)} species, the reaction afforded triply‐bridging bis‐borylene species [(μ3‐BH)2{WCp*(CO)2}2{Ru(CO)3}] ( 2′ ), an analogue of 2 . In search for the isolation of bridging bis‐borylene species of Rh, we have treated [Co2(CO)8] with nido‐[(RhCp*)2(B3H7)], which afforded triply‐bridging bis‐borylene species [(μ3‐BH)2(RhCp*)2Co2(CO)4(μ‐CO)] ( 3 ). All the compounds have been characterized by means of single‐crystal X‐ray diffraction study; 1H, 11B, 13C NMR spectroscopy; IR spectroscopy and mass spectrometry.  相似文献   

3.
Synthesis, Structure, and Reactivity of η1‐ and η3‐Allyl Rhenium Carbonyls In (η3‐C3H5)Re(CO)4 one CO ligand can be substituted by PPh3, pyridine, isocyanide and benzonitrile. With 1,2‐bis(diphenylphosphino)ethylene, 1,1′‐bis(diphenylphosphino)ferrocene and 1,2‐bis(4‐pyridyl)ethane dinuclear ligand bridged complexes are obtained. The η3‐η1 conversion of the allyl ligand occurs on reaction of (η3‐C3H5)Re(CO)4 with the bidendate ligands 1,2‐bis(diphenylphosphino)ethane and 1,3‐bis(diphenylphosphino)propane and with 2,2′‐bipyridine (L–L) which gives the complexes (η1‐C3H5)Re(CO)3(L–L). By reaction of (η3‐C3H5)Re(CO)4 with bis(diphenylphosphino)methane the allyl group is protonated and under elemination of propene the complex (OC)3Re(Ph2PCHPPh2)(η1‐Ph2PCH2PPh2) ( 19 ) with a diphosphinomethanide ligand is formed. On heating solutions of (η3‐C3H5)Re(CO)4 and (η3‐C3H5)Re(CO)3(CN‐2,5‐Me2C6H3) ( 5 ) in methanol the methoxy bridged compounds Re4(CO)12(OH)(OMe)3 and Re2(CO)4(CN‐2,5‐Me2C6H3)4(μ‐OMe)2 ( 20 ) were isolated. The crystal structures of (η3‐C3H5)Re(CO)3(CNCH2SiMe3) ( 4 ), [(η3‐C3H5)(OC)3Re]2‐ (μ‐bis‐(diphenylphosphino)ferrocene) ( 8 ), (η1‐C3H5)Re(CO)3‐ (bpy) ( 14 ), of 19 , 20 and of (OC)3Re‐[Ph2P(CH2)3PPh2]Cl ( 16 ) were determined by X‐ray diffraction.  相似文献   

4.
The ligand-centered mixed-valence (LCMV) properties of two supramolecular complexes are reported: triangular prisms of the form ([Re(CO)3]2X)3-mu,mu',mu' '-[tPyTz]2, where X is 2,2'-bisbenzimidazolate (1) or a pair of benzylthiols (2), and tPyTz is tri-(4-pyridyl)-1,3,5-triazine. Cyclic voltammetry demonstrates that the redox-accessible bridging ligands, tPyTz, are reduced in sequential, one-electron reactions. The singly reduced prisms, which represent an unusual type of mixed-valence compound in which the tPyTz ligands themselves are the redox centers, show intense, broad intervalance transfer (IT) bands in the NIR, consistent with highly coupled MV species. Electroabsorption (Stark spectroscopy) measurements reveal small dipole moment changes associated with intervalence excitation (|Deltamu12| = 0.30 +/- 0.02 eA for 1- and 0.48 +/- 0.02 eA for 2-), as well as noncollinear transition dipole moment (mu12) and dipole moment change vectors (zeta approximately 45 degrees ). DFT electronic structure calculations support this unusual result, along with a through-space electronic interaction mechanism. The neutral complexes (D3h symmetry) possess doubly degenerate, but spatially distinct, LUMO and LUMO+ orbitals. The orbital degeneracy of the tPyTz ligands is lifted in the MV forms, resulting in nonsymmetrical charge redistribution within the molecules upon on optical IT.  相似文献   

5.
The synthesis of organometallic complexes of modified 26π‐conjugated hexaphyrins with absorption and emission capabilities in the third near‐infrared region (NIR‐III) is described. Symmetry alteration of the frontier molecular orbitals (MOs) of bis‐PdII and bis‐PtII complexes of hexaphyrin via N‐confusion modification led to substantial metal dπ–pπ interactions. This MO mixing, in turn, resulted in a significantly narrower HOMO–LUMO energy gap. A remarkable long‐wavelength shift of the lowest S0→S1 absorption beyond 1700 nm was achieved with the bis‐PtII complex, t ‐Pt2‐3 . The emergence of photoacoustic (PA) signals maximized at 1700 nm makes t ‐Pt2‐3 potentially useful as a NIR‐III PA contrast agent. The rigid bis‐PdII complexes, t ‐Pd2‐3 and c ‐Pd2‐3 , are rare examples of NIR emitters beyond 1500 nm. The current study provides new insight into the design of stable, expanded porphyrinic dyes possessing NIR‐III‐emissive and photoacoustic‐response capabilities.  相似文献   

6.
The photophysical and photochemical properties of (OC‐6‐33)‐(2,2′‐bipyridine‐κN1,κN1′)tricarbonyl(9,10‐dihydro‐9,10‐dioxoanthracene‐2‐carboxylato‐κO)rhenium (fac‐[ReI(aq‐2‐CO2)(2,2′‐bipy)(CO)3]) were investigated and compared to those of the free ligand 9,10‐dihydro‐9,10‐dioxoanthracene‐2‐carboxylate (=anthraquinone‐2‐carboxylate) and other carboxylato complexes containing the (2,2′‐bipyridine)tricarbonylrhenium ([Re(2,2′‐bipy)(CO)3]) moiety. Flash and steady‐state irradiations of the anthraquinone‐derived ligand (λexc 337 or 351 nm) and of its complex reveal that the photophysics of the latter is dominated by processes initiated in the Re‐to‐(2,2′‐bipyridine) charge‐transfer excited state and 2,2′‐bipyridine‐ and (anthraquinone‐2‐carboxylato)‐centered intraligand excited states. In the reductive quenching by N,N‐diethylethanamine (TEA) or 2,2′,2″‐nitrilotris[ethanol] TEOA, the reactive states are the 2,2′‐bipyridine‐centered and/or the charge‐transfer excited states. The species with a reduced anthraquinone moiety is formed by the following intramolecular electron transfer, after the redox quenching of the excited state: [ReI(aq−2−CO2)(2,2′‐bipy.)(CO)3]⇌[ReI(aq−2−CO2.)(2,2′‐bipy)(CO)3] The photophysics, particularly the absence of a ReI‐to‐anthraquinone charge‐transfer excited state photochemistry, is discussed in terms of the electrochemical and photochemical results.  相似文献   

7.
Carbon monoxide (CO) has recently been identified as a gaseous signaling molecule that exerts various salutary effects in mammalian pathophysiology. Photoactive metal carbonyl complexes (photoCORMs) are ideal exogenous candidates for more controllable and site‐specific CO delivery compared to gaseous CO. Along this line, our group has been engaged for the past few years in developing group‐7‐based photoCORMs towards the efficient eradication of various malignant cells. Moreover, several such complexes can be tracked within cancerous cells by virtue of their luminescence. The inherent luminecscent nature of some photoCORMs and the change in emission wavelength upon CO release also provide a covenient means to track the entry of the prodrug and, in some cases, both the entry and CO release from the prodrug. In continuation of the research circumscribing the development of trackable photoCORMs and also to graft such molecules covalently to conventional delivery vehicles, we report herein the synthesis and structures of three rhenium carbonyl complexes, namely, fac‐tricarbonyl[2‐(pyridin‐2‐yl)‐1,3‐benzothiazole‐κ2N ,N ′](4‐vinylpyridine‐κN )rhenium(I) trifluoromethanesulfonate, [Re(C7H7N)(C12H8N2S)(CO)3](CF3SO3), ( 1 ), fac‐tricarbonyl[2‐(quinolin‐2‐yl)‐1,3‐benzothiazole‐κ2N ,N ′](4‐vinylpyridine‐κN )rhenium(I) trifluoromethanesulfonate, [Re(C7H7N)(C16H10N2S)(CO)3](CF3SO3), ( 2 ), and fac‐tricarbonyl[1,10‐phenanthroline‐κ2N ,N ′](4‐vinylpyridine‐κN )rhenium(I) trifluoromethanesulfonate, [Re(C7H7N)(C12H8N2)(CO)3](CF3SO3), ( 3 ). In all three complexes, the ReI center resides in a distorted octahedral coordination environment. These complexes exhibit CO release upon exposure to low‐power UV light. The apparent CO release rates of the complexes have been measured to assess their comparative CO‐donating capacity. The three complexes are highly luminescent and this in turn provides a convenient way to track the entry of the prodrug molecules within biological targets.  相似文献   

8.
A metal‐containing N‐heterocyclic germylene based on a N‐mesityl (Mes)‐substituted oxalamidine framework is reported. The precursor (MesN=)2C–C(–N(H)Mes)2 ( 1 H2) was converted into its rhodium complex [Rh(κ2N‐ 1 H2)(cod)][OTf] ( 2 ) (cod = 1,5‐cyclooctadiene; OTf = triflate) in 62 % isolated yield. Subsequent reaction of 2 with Ge{N(SiMe3)2}2 gave the crystalline N‐heterocyclic germylene [Rh(cod)(μ‐ 1 )Ge][OTf] ( 3 ) in 50 % yield. The compounds under study were fully characterized by various methods, also including X‐ray crystallographic studies on single crystals of 2 and 3 . Density functional theory (DFT) calculations revealed that π conjugation in the bridging oxalamidine framework is increased and n(N)–p(Ge) π bonding is decreased upon κ2N metal coordination; a further weakening of the Ge–N bond occurs through triflate coordination to the GeII atom. Nevertheless, preliminary coordination studies revealed that 3 behaves as 2‐electron (L ‐type) germylene donor ligand. Treatment of 3 with [Ir(cod)Cl]2 furnished the heterobimetallic complex [Rh(cod)(μ‐ 1 )Ge‐Ir(cod)Cl][OTf] ( 4 ), as evidenced by NMR spectroscopic investigations and DFT calculations.  相似文献   

9.
The ReI centre in the title compound, [Re(C11H9N2O2)(CO)3] or fac‐Re(CO)3(dpkO,OH) [dpkO,OH is hydroxybis(2‐pyridyl)methanolato], (I), is in a pseudo‐octahedral environment in which the major distortion is due to the constraints associated with the tridentate binding of the dpkO,OH anion. The carbonyl groups are orthogonal, with an average C—Re—C angle of 90.2 (3)°. The mol­ecules pack in stacks of antiparallel tapes of (I) interlocked via a network of hydrogen bonds.  相似文献   

10.
The reactions of [Re(CO)6]+, [FeCp(CO)2CS]+ and [FeCp(CNPh)3]+ with the metallo nitrile ylides [M{C+=N–C(H)CO2Et}(CO)5] (M = Cr, W) and the chromio nitrile imine [Cr{C+=N–NH}(CO)5] (generated by mono‐α‐deprotonation of the parent isocyanide complexes) to give neutral 5‐metallated 1,3‐oxazolin‐ ( 1 ), 1,3‐thiazolin‐ ( 2 ), imidazolin‐ ( 3 , 4 ), 1,3,4‐oxdiazolin‐ ( 5 ), 1,3,4‐thiadiazolin‐ ( 6 ) and 1,3,4‐triazolin‐2‐ylidene ( 8 ) chromium and tungsten complexes represent the first all‐organometallic versions of Huisgen’s 1,3‐dipolar cycloadditions. The formation of 6 and 8 is accompanied by partial decomposition to (OC)5Cr–C≡N–FeCpL2 {L = CO ( 7 ), CNPh ( 9 )}. The structures of 4a and 5 have been characterized by X‐ray diffraction.  相似文献   

11.
The title compound, {[N,N‐bis­(2‐pyridylmeth­yl)­amino]­ethanol‐κ3N,N′,N′′}tricarbonyl­rhenium(I) bromide methanol solvate, [Re(C14H17N3O)(CO)3]Br·CH4O, has been prepared in almost quantitative yield by reacting (NEt4)2[Re(CO)3Br3] with the ligand N,N‐bis­picol­yl‐2‐ethano­lamine in refluxing methanol. The X‐ray structure revealed that the Re(CO)3N3 coordination sphere is highly distorted from octa­hedral geometry and that the Re(CO)3 core is facial. The coordinated ligand forms two five‐membered rings, with the pyridine rings in a butterfly formation. The OH group is not involved in metal coordination. The packing of the mol­ecule shows a network of classical O⋯H—O and Br⋯H—O, and non‐classical Br⋯H—C and O⋯H—C hydrogen bonds between the methanol solvate mol­ecules, the metal complex cations and the bromide anions.  相似文献   

12.
Reactions of [{Ru(tmpa)}2(μ‐Cl)2][ClO4]2, ( 2 [ClO4]2, tmpa=tris(2‐pyridylmethyl)amine) with 2,5‐dihydroxy‐1,4‐benzoquinone ( L1 ), 2,5‐di‐[2,6‐(dimethyl)‐anilino]‐1,4‐benzoquinone ( L2 ), or 2,5‐di‐[2,4,6‐(trimethyl)‐anilino)]‐1,4‐benzoquinone ( L3 ) in the presence of a base led to the formation of the dinuclear complexes [{Ru(tmpa)}2(μ‐ L1 ?2 H)][ClO4]2 ( 3 [ClO4]2), [{Ru(tmpa)}2(μ‐ L2 ?2 H)][ClO4]2 ( 4 [ClO4]2), and [{Ru(tmpa)}2(μ‐ L3 ?2 H)][ClO4]2 ( 5 [ClO4]2). Structural characterization of 5 [ClO4]2 showed the localization of the double bonds within the quinonoid ring and a twisting of the mesityl substituents with respect to the quinonoid plane. Cyclic voltammetry of the complexes show two reversible oxidation and quinonoid‐based reduction processes. Results obtained from UV/Vis/NIR and EPR spectroelectrochemistry are invoked to discuss ruthenium‐ versus quinonoid‐ligand‐centered redox activity. The complex 3 [ClO4]2 is compared to the reported complex [{Ru(bpy)}2(μ‐ L1 ?2 H)]2+ ( 12+ , bpy=2,2′‐bipyridine). The effects of substituting the bidentate and better π‐accepting bpy co‐ligands with tetradentate tmpa ligands [pure σ‐donating (amine) as well as σ‐donating and π‐accepting (pyridines)] on the redox and electronic properties of the complexes are discussed. Comparisons are also made between complexes containing the dianionic forms of the all‐oxygen‐donating L1 ligand with the L2 and L3 ligands containing an [O,N,O,N] donor set. The one‐electron oxidized forms of the complexes show absorption in the NIR region. The position as well as the intensity of this band can be tuned by the substituents on the quinonoid bridge. In addition, this band can be switched on and off by using tunable redox potentials, making such systems attractive candidates for NIR electrochromism.  相似文献   

13.
Two heterobimetallic Zn‐Nd phenylene‐bridged Schiff‐base ligands complexes [ZnNd L1 (Py)(NO3)3] ( 1 ) and [Zn L2 Nd(Py)(NO3)3]·MeCN ( 2 ) (Py = pyridine, H2L1 = N,N′‐bis‐ (3‐methoxy‐salicylidene)phenylene‐1,2‐diamine, H2L2 = N,N′‐bis‐5‐bromo‐3‐methoxy‐salicylidene)phenylene‐1,2‐diamine) were obtained. Both 1 and 2 were structurally characterized by X‐ray crystallography, and their near‐infrared (NIR) luminescent properties were determined. For the two complexes, the occupation of pyridine at the axial position of 3d Zn2+ ions could effectively prevent luminescent quenching arising from OH‐, NH‐ or CH oscillators of the solvates around the 4f Nd3+ ions, and the heavy‐atom (Br) effect of the Schiff‐base ligands on their NIR luminescent properties is also discussed.  相似文献   

14.
ReV‐Phthalocyaninates and ReV‐Tetraphenylporphyrinates: Synthesis, Properties, and Crystal Structure Hexa‐coordinated ReV phthalocyaninates (pc) and ReV tetraphenylporphyrinates (tpp) of the type [Re(O)(X)p] (p: pc, tpp) with X = OCH3, ReO4, Cl/pc, F/pc, OH/tpp, [{Re(O)p}2(μ‐O)] and (cat)trans[Re(O)2p] (cat: nBu4N, Et4N/tpp) have been isolated and characterised by their UV‐Vis‐NIR, IR and resonance Raman (RR) spectra. In the RR spectra, the intensity of the (Re=O) and (Re–X) stretching vibrations (ν(Re=O/–X)) in [Re(O)(X)p] and [{Re(O)p}2(μ‐O)] is selectively enhanced with excitation in coincidence with O → Re–CT between ca 19000 and 22000 cm–1. In accordance to selection rules, data of ν(Re=O/–X) compare well with those of the complementary IR spectra. Because of the trans influence ν(Re=O) depends on the axial ligand X, ranging from 940 to 1010 cm–1. The crystallographic characterization of [Re(O)(ReO4)tpp] · CHCl3 ( 1 ), [{Re(O)tpp}2(μ‐O)] · py ( 2 ), (nBu4N)trans[Re(O)2tpp] ( 3 ), and (Et4N)trans[Re(O)2tpp] · 2 H2O ( 4 ) is described. The tpp centered Re atom is in a distorted octahedron of four N atoms of the porphyrinate and two axial O atoms in a mutual trans position. Average Re–N distances are 2.062 Å in 1 , 2.086 Å in 2 , 2.089 Å in 3 , and 2.082/2.086 Å in 4 . The Re–O distance of the terminal rhenyl group varies from 1.64(1) Å ( 1 ), 1.73(1)/1.70(1) Å ( 2 ) to 1.80(1) Å ( 4 ), that of the monodentate rhenate(VII) from 1.70(1) to 1.75(1) Å. The Re–O distances in the bridge of the linear O=Re–O–Re=O skeleton in 2 are 1.95(1)/1.89(1) Å. In 1 , with a bent O=Re–O^ ReO3 moiety (∢(Re–O^ReO3) = 143(1)°) and a mostly ionic coordinated rhenate(VII), these distances differ significantly (2.20(1) Å vs 1.75(1) Å). The porphyrinate in 1 is saucer‐shaped with a distal rhenate(VII), and the tpp centered Re atom is displaced by 0.31 Å out of the (N)4 plane towards the rhenyl‐O atom. The distorted porphyrinates in 2 are rotated by 30.4(4)°, and the Re atoms are 0.1 Å out of their (N)4 planes towards the terminal O atoms. In 3 and 4 the porphyrinates are almost planar with the Re atom in their centre.  相似文献   

15.
Organometallic 5d6 Transition Metal Complexes of 1‐Methyl‐(2‐alkylthiomethyl)‐1H‐benzimidazole Ligands: Structures and Electrochemical Oxidation The complexes [(mmb)Re(CO)3Cl], [(mtb)Re(CO)3Cl], [(mmb)OsCl(Cym)](PF6) and [(Cym)OsCl(mtb)](PF6) where Cym = p‐cymene, mmb = 1‐methyl‐(2‐methylthiomethyl)‐1H‐benzimidazole and mtb = 1‐methyl‐(2‐tert‐butylthiomethyl)‐1H‐benzimidazole were synthesized and, except for the latter, structurally characterized. In comparison with other late transition metal compounds of these N‐S chelate ligands the rhenium(I) systems exhibit a balanced coordination to both N and S donor atoms. Anodic one‐electron oxidation produces EPR‐silent rhenium(II) states whereas the osmium(III) species [(mmb)OsCl(Cym)]2+ could be identified via EPR and UV/VIS spectroelectrochemistry.  相似文献   

16.
The title organometallic compound, fac‐tri­carbonyl‐2κ3C‐(4,4′‐di­methyl‐2,2′‐bi­pyridine)‐2κ2N,N′‐tri­phenyl‐1κ3C1‐tin(II)­rhenium(I)(Sn—Re), [ReSn(C6H5)3(C12H12N2)(CO)3], con­tains three unique π–π stacking interactions. The result is an infinite chain of uninterrupted alternating intra‐ and intermolecular offset π–π stacking interactions throughout the crystal lattice. This extended π–π stacking arrangement, and an additional isolated intramolecular π–π interaction between the remaining 4,4′‐di­methyl‐2,2′‐bi­pyridine ring and a second phenyl group, impose geometric constraints on the Re and Sn atoms, yielding distorted octahedral and tetrahedral coordinations, respectively, for the metal centers.  相似文献   

17.
Perfluoromethyl Element Ligands. XLIII [1] Novel Synthetic Routes to Binuclear Complexes of the Type MM′(CO)8ER2X (M/M′ = Mn/Mn, Mn/Re, Re/Re; E = P, As; R = CF3, Me; X = Hal, ) Mn(CO)5I reacts with compounds of the type (CF3)2EAsMe2 (E = P, As) as with the symmetric E2(CF3)4 ligands in the first step with cleavage of the E‐As bond to yield the pro ducts (CO)5MnE(CF3)2 and Me2AsI. Reaction of the mononuclear complexes with excess of Mn(CO)5I leads in good yields to the known dinuclear compounds (CO)4Mn[E(CF3)2, I]Mn(CO)4 and CO. Me2AsI, the second product of the EAs cleavage, attacks the starting compound Mn(CO)5I giving cis‐Mn(CO)4I(AsMe2I) and CO. This result encouraged us to thoroughly investigate the preparation of cis‐M(CO)4X(EMe2Y) complexes with most of the possible combinations of M = Mn, Re; E = P, As and X, Y = Cl, Br, I. An alternative route to these compounds was opened by the cleavage of the dinuclear manganese or rhenium halides M2(CO)8X2 with the halophosphanes or ‐arsanes Me2EY. This route was found to be especially advantageous for the preparation of the rheniumcarbonyl precursors, since milder conditions than for the CO‐substitution in Re(CO)5X compounds are sufficient for the halogen‐bridged dinuclear complexes. Cis‐M(CO)4X(EMe2Y) complexes were used as precursors for the synthesis of novel homo‐ and heterodinuclear complexes of the type (CO)4M(EMe2, X)M′(CO)4 by reacting the EY function with transition metal carbonylates Kat[M′(CO)5] (Kat = Na, Bu4N, Ph4As). Thus the preparation of a wide range of complexes was possible, which before had been successfully prepared by the direct reaction of Mn2(CO)10 with Me2EX only in few cases, e. g. with Me2AsI. Spectroscopic investigations, using the CO valence frequencies and the 1H‐NMR data of the ligands EMe2Y or of the Me2E bridges, were applied to study the influence of the variables M, M′, E, X, Y and Kat on the reactivity of the mononuclear complexes and the bonding situation in both the mono‐ and the dinuclear systems. The new compounds were characterized by spectroscopic (IR, NMR, MS) and analytic methods (C, H).  相似文献   

18.
The two neutral complexes [Re(CO)3(H−1taci)] ( 1 ) and [ReO3(H−1taci)] ( 2 ) (taci=1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol) were synthesized from the conventional ReI and ReVII precursors (Et4N)2[ReBr3(CO)3] and [ReO3(OSnMe3)]. The crystal structures of 1 and 2 , which were determined by single crystal X‐ray analysis, are virtually isomorphous. Both compounds crystallize in the orthorhombic space group Pnma, Z=4; 1 : a=14.806(3), b=8.466(2), c=9.781(2) Å, 2 : a=13.050(2), b=8.732(1), c=9.061(1) Å. In both complexes, the monodeprotonated H−1taci ligand is bonded to the Re center in an N,O,N‐coordination mode. The resulting molecular Cs symmetry is retained in the crystal structure and confirmed by IR spectroscopy of solid‐state samples. The observed binding mode of the ligand is discussed in terms of steric and electronic effects.  相似文献   

19.
Salts containing bis‐phosphonio‐benzophospholide cations 2 a – d with an additional donor site in one of the phosphonio‐moieties were synthesized either via quaternisation of the Ph2P moiety in the neutral phosphonio‐benzophospholide 3 , or via ring‐closure of the functionalized bis‐phosphonium ion 6 . The Ph2P‐substituted cation 2 d formed chelate complexes [M(k2P,P′‐ 2 d )(CO)n]+ with M(CO)n = Ni(CO)2, Fe(CO)3, Cr(CO)4. In the latter case, competition between formation of the chelate and a complex [Cr(kP‐ 2 d )2(CO)4]2+ was observed, and interpreted as a consequence of antagonism between the stabilizing chelate effect and destabilizing ligand–ligand repulsions. The formation of stable PdII and PtII complexes of 2 d suggests that the chelate effect may also overcome the kinetic inhibition which so far prevented isolation of complexes of these metals with bis‐phosphonio‐benzophospholides. The newly synthesized ligands and complexes were characterized by spectroscopic data, and an X‐ray crystal structure analysis of 2 a [Br]. The reactivity of chelate complexes towards Ph3P indicates that the ring phosphorus atom is a weaker donor than the pendant Ph2P‐group.  相似文献   

20.
Mononitrosyl and trans ‐Dinitrosyl Complexes of Phthalocyaninates of Manganese and Rhenium Tetra(n‐butyl)ammonium or di(triphenylphosphane)iminium nitrosylacidophthalocyaninato(2–)manganate, (cat)[Mn(NO)(X)pc2–] (X = ONO, NCO, N3; cat = nBu4N, PNP) is prepared from acidophthalocyaninato(2–)manganese, [Mn(X)pc2–], (cat)NO2 and (nBu4N)BH4 in CH2Cl2 or from nitrosylphthalocyaninato(2–)manganese, [Mn(NO)pc2–] and (nBu4N)X (X = ONO, NCO, N3, NCS) at T < 120 °C, respectively. [Mn(NO)(X)pc2–] dissociates in methanol, and [Mn(NO)pc2–] precipitates. Nitrito(O)phthalocyaninato(2–)manganese, (cat)NO2 and hydrogensulfide yield trans‐di(nitrosyl)phthalocyaninato(2–)manganate, trans[Mn(NO)2pc2–], isolated as red violet (PNP) and (nBu4N) complex salt. Nitrosyl(triphenylphosphane oxide)phthalocyaninato(2–)manganese, [Mn(NO)(OPPh3)pc2–] is obtained by addition of OPPh3 to [Mn(NO)pc2–] at 200 °C. Di(triphenylphosphane)phthalocyaninato(2–)rhenium(II) and (PNP)NO2 in CH2Cl2 or in molten (PNP)NO2 and PPh3 at 100 °C yields green blue l‐di(triphenylphosphane)iminium nitrosylnitrito(O)phthalocyaninato(2–)rhenate, l(PNP)[Re(NO)(ONO)pc2–]. Similarly, but with (nBu4N)NO2 red plates of tetra‐(n‐butyl)ammonium trans‐di(nitrosyl)phthalocyaninato(2–)rhenate, (nBu4N)trans[Re(NO)2pc2–] is isolated. Addition of (PNP)Br or (PNP)PF6 to a concentrated solution of (nBu4N)trans[Re(NO)2pc2–] in pyridine precipitates l(PNP)trans[Re(NO)2pc2–]. (nBu4N)trans[Re(NO)2pc2–] and PPh3 at 300 °C yield blue green nitrosyl(triphenylphosphane oxide)phthalocyaninato(2–)‐ rhenium, [Re(NO)(OPPh3)pc2–], that is oxidised with iodine precipitating nitrosyl(triphenylphosphane oxide)phthalocyaninato(2–)rhenium triiodide, [Re(NO)(OPPh3)pc2–]I3. The crystal structures of l(PNP)[Mn(NO)(ONO)pc2–] ( 1 ), l(PNP)‐ [Mn(NO)(NCO)pc2–] ( 2 ), l(PNP)trans[Mn(NO)2pc2–] ( 3 ), l(PNP)trans[Re(NO)2pc2–] ( 4 ) [Mn(NO)(OPPh3)pc2–] ( 5 ), [Re(NO)(OPPh3)pc2–] ( 6 ), and [Re(NO)(OPPh3)pc2–]I3 · CH2Cl2 ( 7 ) have been determined. The M–N(NO) distance varies between 1.623(12) Å in 5 and 1.846(3) Å in 3 . The M–N–O moiety is almost linear. The UV‐Vis spectra with the B band at ca. 14500 cm–1and the Q band at 30400 cm–1 do not dependent significantly on the axial ligand and the metal atom and its oxidation state. N–O stretching vibrations are observed in the IR spectra between 1701 cm–1 in 3 and 1753 cm–1 in [Mn(NO)pc2–] or for the Re series between 1571 cm–1 in 4 and 1724 cm–1 in 7 . M–N(NO) stretching and M–N–O deformation vibrations are assigned in the IR spectra and resonance Raman spectra between 486 cm–1 in 4 and 620 cm–1 in 1 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号