首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, we report on Raman studies carried out on different carbon nanotube systems, namely single-walled and multi-walled carbon nanotubes and polymer/nanotube composites. We focus on different types of interactions which can take place in these materials. In single-walled nanotubes, the introduction of van der Waals interactions between tubes when arranged in bundles leads to an upshift of the radial breathing mode (RBM) ranging from 11 to 16 cm−1 depending on the size of the bundle. In multi-walled carbon nanotubes, similar interactions between concentric tubes permit to interpret the low frequency Raman modes. In composites, PMMA/nanotubes, an upshift of the RBM is also observed, explained by the dynamical strain applied by the polymer on the bundles, in response to the breathing vibration. In addition, surface enhanced Raman scattering experiments have demonstrated the occurrence of interfacial reactions between the nanotubes and the metallic support. This is put in evidence by the degradation of tubes, especially metallic ones, and reconstruction of C60-like molecules are in some cases observed.  相似文献   

2.
Microscopical, differential scanning colorimetry (DSC), and X-ray structural investigations of solution crystallized carbon nanotube (CNT) composites with linear polyethylene (LPE), isotactic polypropylene (iPP), polybutene-1 (PB-1), and nylon 6 (PA6) disclosed varying degrees of surface interaction and nucleation effect of CNT in these polymers and formation of oriented shish-kebab overgrowths on the CNT ropes in LPE and PA6. The character of the attraction and orientation forces at the CNT-polymer interface is discussed.  相似文献   

3.
Density functional calculations have been performed to investigate the dependence of methanol interaction with the side walls of single-walled carbon nanotubes (SWCNTs) on the nanotube's type, curvature and chirality. The author's results show that methanol prefers to be physically adsorbed on semiconducting CNTs in comparison with the metallic one. It was found that the binding energy of methanol is increased for adsorption on larger-diameter nanotubes. Furthermore, we find that when a methanol molecule was adsorbed on higher chiral angle nanotubes the binding energy was increased. The study of the electronic structures and Mulliken analysis indicate that the methanol and CNT are interacting rather weakly, consistent with recent experimental observation.  相似文献   

4.
The Raman spectra of single-walled carbon nanotubes at temperatures up to 730 K and pressures up to 7 GPa have been measured. The behavior of phonon modes and the interaction between nanotubes in bundles have been studied. It has been found that the temperature shift of the vibrational G mode is completely reversible, whereas the temperature shift of radial breathing modes is partially irreversible and the softening of the modes and narrowing of phonon bands are observed. The temperature shift and softening of radial breathing modes are also observed when samples are irradiated by laser radiation with a power density of 6.5 kW/mm2. The dependence of the relative frequency Ω/Ω0 for G + and G ? phonon modes on the relative change A 0/A in the triangular lattice constant of bundles of nanotubes calculated using the thermal expansion coefficient and compressibility coefficient of nanotube bundles shows that the temperature shift of the G mode is determined by the softening of the C-C bond in nanotubes. An increase in the equilibrium distances between nanotubes at the breaking of random covalent C-C bonds between nanotubes in bundles of nanotubes is in my opinion the main reason for the softening of the radial breathing modes.  相似文献   

5.
Matrix-assisted pulsed laser evaporation (MAPLE) is a prominent member of a broad and expanding class of laser-driven deposition techniques where a matrix of volatile molecules absorbs laser irradiation and provides the driving force for the ejection and transport of the material to be deposited. The mechanisms of MAPLE are investigated in coarse-grained molecular dynamic simulations focused on establishing the physical regimes and limits of the molecular transfer from targets with different structures and compositions. The systems considered in the simulations include dilute solutions of polymer molecules and individual carbon nanotubes (CNTs), as well as continuous networks of carbon nanotubes impregnated with solvent. The polymer molecules and nanotubes are found to be ejected only in the ablation regime and are incorporated into matrix-polymer droplets generated in the process of the explosive disintegration of the overheated matrix. The ejection and deposition of droplets explain the experimental observations of complex surface morphologies in films deposited by MAPLE. In simulations performed for MAPLE targets loaded with CNTs, the ejection of individual nanotubes, CNT bundles, and tangles with sizes comparable or even exceeding the laser penetration depth is observed. The ejected CNTs align along the flow direction in the matrix plume and tend to agglomerate into bundles at the initial stage of the ablation plume expansion. In a large-scale simulation performed for a target containing a network of interconnected CNT bundles, a large tangle of CNT bundles with the total mass of 50 MDa is separated from the continuous network and entrained with the matrix plume. No significant splitting and thinning of CNT bundles in the ejection process is observed in the simulations, suggesting that fragile structural elements or molecular agglomerates with complex secondary structures may be transferred and deposited to the substrate with the MAPLE technique.  相似文献   

6.
We report on theoretical studies of electronic transport in the archetypical molecular hybrid formed by DNA wrapped around single-walled carbon nanotubes (CNTs). Using a Green's function formalism in a π-orbital tight-binding representation, we investigate the role that spin-orbit interactions play on the CNT in the case of the helicoidal electric field induced by the polar nature of the adsorbed DNA molecule. We find that spin polarization of the current can take place in the absence of magnetic fields, depending strongly on the direction of the wrapping and length of the helicoidal field. These findings open new routes for using CNTs in spintronic devices.  相似文献   

7.
The thermal properties of carbon nanotubes are directly related to their unique structure and small size. Because of these properties, nanotubes may prove to be an ideal material for the study of low-dimensional phonon physics, and for thermal management, both on the macro- and the micro-scale. We have begun to explore the thermal properties of nanotubes by measuring the specific heat and thermal conductivity of bulk SWNT samples. In addition, we have synthesized nanotube-based composite materials and measured their thermal conductivity. The measured specific heat of single-walled nanotubes differs from that of both 2D graphene and 3D graphite, especially at low temperatures, where 1D quantization of the phonon bandstructure is observed. The measured specific heat shows only weak effects of intertube coupling in nanotube bundling, suggesting that this coupling is weaker than expected. The thermal conductivity of nanotubes is large, even in bulk samples: aligned bundles of SWNTs show a thermal conductivity of >200 W/m K at room temperature. A linear K(T) up to approximately 40 K may be due to 1D quantization; measurement of K(T) of samples with different average nanotube diameters supports this interpretation. Nanotube–epoxy blends show significantly enhanced thermal conductivity, showing that nanotube-based composites may be useful not only for their potentially high strength, but also for their potentially high thermal conductivity. Received: 17 October 2001 / Accepted: 3 December 2001 / Published online: 4 March 2002  相似文献   

8.
In this research, networks of single-walled carbon nanotubes (SWNTs) were used to host activated carbon (aC) microparticles to fabricate freestanding composite electrodes without the use of polymer binders. The aC-SWNT composite electrodes with up to 50 wt. % aC showed specific surface areas approaching 1000 m2/g and electrical conductivities >36 S/cm. The composite electrodes possessed the properties of both pure SWNT electrodes (e.g. low ohmic drop and rapid ion diffusion) and activated carbon particles (e.g. high specific capacitance). With an interconnected mesoporous microstructure and high electrical conductivity, the CNT networks provide an attractive alternative to polymer binders for forming freestanding electrodes for electrical energy storage devices. Here we show that micron-sized particles can be supported in this framework to utilize the performance enhancement and robustness provided by CNTs. Symmetric electrochemical capacitors fabricated with the electrodes in 6 M potassium hydroxide (KOH) aqueous electrolyte maintained specific capacitances of more than 45 F/g after 30,000 constant-current charge–discharge cycles with a current of 3.6 mA/cm2.  相似文献   

9.
This site study was conducted in a chemical laboratory to evaluate nanomaterial emissions from 20–30-nm-diameter bundles of single-walled carbon nanotubes (CNTs) during product development activities. Direct-reading instruments were used to monitor the tasks in real time, and airborne particles were collected using various methods to characterize released nanomaterials using electron microscopy and elemental carbon (EC) analyses. CNT clusters and a few high-aspect-ratio particles were identified as being released from some activities. The EC concentration (0.87 μg/m3) at the source of probe sonication was found to be higher than other activities including weighing, mixing, centrifugation, coating, and cutting. Various sampling methods all indicated different levels of CNTs from the activities; however, the sonication process was found to release the highest amounts of CNTs. It can be cautiously concluded that the task of probe sonication possibly released nanomaterials into the laboratory and posed a risk of surface contamination. Based on these results, the sonication of CNT suspension should be covered or conducted inside a ventilated enclosure with proper filtration or a glovebox to minimize the potential of exposure.  相似文献   

10.
We report the first measurement of the structure of 4He atoms adsorbed on bundles of single-walled carbon nanotubes. Neutron diffraction techniques and nanotube samples closed at the end were used. At low coverage, 4He forms a 1D, single line lattice along the grooves between two nanotubes on the surface of the nanotube bundles. As coverage is increased, additional lines of 1D lattices form along the grooves. This is followed by an incommensurate, 2D monolayer covering the whole nanotube bundle surface. The lattice constants of these 1D and 2D systems are largely independent of filling once a single 1D line is formed. No occupation of the interstitial channels between nanotubes is observed in the present sample.  相似文献   

11.
蔡建臻  朱宏伟  吴德海  刘峰  吕力 《物理学报》2006,55(12):6585-6588
单壁碳纳米管在高压下会发生结构相变,导致金属型的碳纳米管变成半导体.相变后碳纳米管中电子的库仑关联的表现形式发生变化,从Luttinger liquid行为转变成环境量子涨落行为.同时,相变后电子波函数的相位关联导致弱局域化行为的出现.为了研究库仑关联和相位关联之间是否有相互影响,使用金刚石对顶砧和液压自锁高压包在0—10 GPa准静压范围内测量了单层碳纳米管样品在低温和不同磁场下的微分电导随偏压的依赖关系.实验结果表明,相位关联和库仑关联是两种独立的效应,各自影响着电子的输运行为. 关键词: 单层碳纳米管 高压 微分电导  相似文献   

12.
Ultraviolet (UV) degradation is one of the most important challenges of waterborne coatings in exterior applications. One of the ways to address this issue is addition of radical scavenging species within the polymer matrix. Herein, hybrids of graphene (G) and multiwall carbon nanotubes (CNTs) in different ratios are used as radical scavenging species. Evaluated by electron paramagnetic resonance spectroscopy, it is found that the hybrid made of G/CNTs in ratio of 10:1 efficiently captures and quenches the free radicals. The waterborne polymer composites containing 1 wt% of hybrid G/CNT are synthesized by in situ miniemulsion free radical polymerization using a water soluble initiator. However, due to excellent efficiency to capture free radicals, the polymerization performed using water soluble initiators in the presence of 10:1 G/CNT filler is hindered. This is resolved by physical separation of the free radicals and the scavenging materials within different phases by use of oil soluble initiator. The resulting polymer composites, beside having excellent mechanical resistance, present exceptional stability under accelerated aging conditions during 400 h, suppressing almost completely the UV photodegradation. This is attributed to the efficient radical scavenging of the G/CNTs hybrid filler distributed within polymer matrix, resulting in high‐performance UV protective waterborne composite coatings.  相似文献   

13.
Modeling of the quantum interaction properties of glycine radicals on the sidewalls of the single-walled carbon nanotubes (CNTs) is investigated by MINDO/3 (Modified Intermediate Neglect of Differential Overlap version 3) calculations. It is found that the interaction potential of the N-centered glycine radical with the tubes results in stable complexes when it reacts with the nitrogen atom (N2 centered) and metastable conformations with C2 atoms. We have studied the effect of the diameter–length characteristics of the CNT on binding the amino acid. Our results suggest that the binding energy is lower as the CNT diameter increases, while as the CNT length increases, the binding energy initially increases and then slightly fluctuates.  相似文献   

14.
The effect of atomic hydrogen adsorption on the conduction and diffusion properties of carbon nanotubes of zigzag type in an external electric field is considered. The model of adsorption of atomic hydrogen on the surface of single-walled carbon nanotubes of zigzag type is based on the single-impurity periodic Anderson model. The theoretical calculation of the diffusion coefficient and electrical conductivity of carbon nanotubes of zigzag type doped with hydrogen atoms is carried out in the relaxation time approximation. It has been revealed that the electrical conductivity and electron diffusion coefficient decrease with increasing concentration of adsorbed hydrogen atoms. It has been shown that the dependence of the electrical conductivity and the diffusion coefficient on the amplitude of the constant electric field at the constant concentration of hydrogen adatoms is nonlinear.  相似文献   

15.
We review the state-of-the-art in the carbon nanotube (CNT) electronics. The emphasis is made on actually created devices. The history of discovery of fullerenes is outlined and their properties are considered. Experimental discovery of nanotubes and nanotube synthesis technologies are reviewed. The CNT conductivity dependence on the geometrical structure of nanotubes is discussed. Various nanoelectronic CNT devices, such as nanowires, heterojunctions, diodes, and field-effect transistors are presented. Quantum properties of CNTs at low temperatures are discussed. CNT-based mechanical devices, memory elements, and switches are considered. Field emission properties of CNTs are analyzed. The data on the developed CNT-based light-emitting elements and the manufactured pre-production models of CNT flat-panel displays are given.  相似文献   

16.
A connection between the stiffness of carbon nanotubes (CNT) and their mesoscopic physical behaviour is presented. Persistence lengths of CNT and bundles are calculated and shown to be in macroscopic range (0.03–1 mm for an individual tube), exceeding by many orders of magnitude the typical diameters (around 1–3 nm). Consequently, thermal fluctuations can be neglected when scaling analysis is applied to randomly packed (as produced) CNT network, leading to an approximate equation of state for such material. Beyond the linear elasticity, the outmost CNT are shown to gradually split from the bent bundles; this permits access of solvent or reacting species to the CNT walls, an important mechanism promoting solubilization and chemical functionalization of nanotubes.  相似文献   

17.
High values of the thermopower and its derivative with respect to temperature in metallized carbon nanotubes at low temperatures are shown to result from the following factors: structural inhomogeneities and modification of the electronic structure both due to local structural regions of disrupted long-range order and to electron-electron interaction. The former factor plays an important role in carbon-nanotube bundles, whereas the latter is of substantial significance in single-walled nanotubes. Statistical inhomogeneities and all broken bonds are essential for electron scattering that gives rise to electron transport in metallized carbon nanotubes. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 31–41, March, 2009.  相似文献   

18.
The temperature dependences of the number of nucleating single-walled and few-walled nanotubes and their diameter have been determined over a wide range of model parameters in the framework of the problem regarding the nucleation of carbon nanotubes from catalytic particles supersaturated with carbon. It has been demonstrated that, initially, individual nanotubes nucleate and grow and, then, they can be joined together into bundles. The mechanism of the formation of bundles in the proposed model follows from the quantum-chemical analysis of the steady-state growth of nanotubes at the level of release of individual carbon atoms. During the growth, the axis of the nanotube rotates about the normal to the surface of the catalytic particle. This leads to the cross-linking of nanotubes into bundles. The characteristic diagram of the regions of the existence of individual single-walled, few-walled, and multiwalled nanotubes and their bundles has been constructed as a function of the temperature and the size of catalytic particles.  相似文献   

19.
The effect of the composition of glassy ionic conductors AgGe1 + x As1–x S3 and the composites based on these materials containing single-walled carbon nanotubes (CNT) AgGe1+x As1–x (S + CNT)3, on the atomic structure and ionic conductivity is analyzed.  相似文献   

20.
This paper reports that the multi-walled carbon nanotubes(MWCNT)/nylon-6 (PA6) nanocomposites with different MWCNT loadingshave been prepared by a simple melt-compounding method. Theelectrical, dielectric, and surface wetting properties of theCNT/PA6 composites have been studied. The temperature dependence ofthe conductivity of the CNT/PA6 composite with 10.0 wt{\%} CNTloading ($\sigma _{\rm RT} \sim 10^{-4}$ S/cm) are measured, andafterwards a charge-energy-limited tunnelling model (ln $\sigma (T)\sim T^{-1/2})$ is found. With increasing CNT weight percentage from0.0 to 10.0 wt%, the dielectric constant of the CNT/PA6composites enhances and the dielectric loss tangent increases twoorders of magnitude. In addition, water contact angles of theCNT/PA6 composites increase and the composites with CNT loadinglarger than 2.0 wt%even become hydrophobic. The obtainedresults indicate that the electrical and surface properties of thecomposites have been significantly enhanced by the embedded carbonnanotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号