首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
General thermodynamic relations for the work of polydisperse micelle formation in the model of ideal solution of molecular aggregates in nonionic surfactant solution and the model of "dressed micelles" in ionic solution have been considered. In particular, the dependence of the aggregation work on the total concentration of nonionic surfactant has been analyzed. The analogous dependence for the work of formation of ionic aggregates has been examined with regard to existence of two variables of a state of an ionic aggregate, the aggregation numbers of surface active ions and counterions. To verify the thermodynamic models, the molecular dynamics simulations of micellization in nonionic and ionic surfactant solutions at two total surfactant concentrations have been performed. It was shown that for nonionic surfactants, even at relatively high total surfactant concentrations, the shape and behavior of the work of polydisperse micelle formation found within the model of the ideal solution at different total surfactant concentrations agrees fairly well with the numerical experiment. For ionic surfactant solutions, the numerical results indicate a strong screening of ionic aggregates by the bound counterions. This fact as well as independence of the coefficient in the law of mass action for ionic aggregates on total surfactant concentration and predictable behavior of the "waterfall" lines of surfaces of the aggregation work upholds the model of "dressed" ionic aggregates.  相似文献   

2.
The effect of salts on the solvent-induced interactions between hydrophobic particles dispersed in explicit aqueous solution is investigated as a function of the salt's ionic charge density by molecular dynamics simulations. We demonstrate that aggregates of the hydrophobic particles can be formed or dissolved in response to changes in the charge density of the ions. Ions with high charge density increase the propensity of the hydrophobic particles to aggregate. This corresponds to stronger hydrophobic interactions and a decrease in the solubility (salting-out) of the hydrophobic particles. Ions with low charge density can either increase or decrease the propensity for aggregation depending on whether the concentration of the salt is low or high, respectively. At low concentrations of low charge density ions, the aggregate forms a "micelle-like" structure in which the ions are preferentially adsorbed at the surface of the aggregate. These "micelle-like" structures can be soluble in water so that the electrolyte can both increase the solubility and increase aggregation at the same time. We also find, that at the concentration of the hydrophobic particles studied (approximately 0.75 m), the aggregation process resembles a first-order transition in finite systems.  相似文献   

3.
The behavior of a rod-like, water-soluble, polyelectrolyte-surfactant aggregate system (pC16TVB) in aqueous solution is characterized to determine the partitioning of surfactant in these systems and the impact on aggregate structure. These aggregates are generated by in situ polymerization of a cationic surfactant-hydrotrope wormlike micelle system. This system differs from most other polyelectrolyte-surfactant systems in that the monomer groups and the surfactant are present in ion pairs in the absence of added salts or counterions, so the stoichiometry (with respect to charge) is 1:1 for the system. Therefore, after polymerization the surfactant acts as the counterion for the polyelectrolyte chains as other counterions (salts) are not available. Despite being present in a 1:1 molar ratio, the aggregates are surprisingly stable in water (concentrations >600 mg/mL have been achieved). The conformation of the polyelectrolyte in the aggregate is analogous to the case of a polymer chain in tight confinement in a "tube" or cylindrical pore in which the pore walls are attractive--the tube is formed by the surfactant which is free to dissociate from the aggregates. A simple model for the structure and partitioning is presented and the ability to manipulate the aggregate structure is demonstrated.  相似文献   

4.
The phase behavior of ternary mixtures containing an alkyltrimethylammonium polyacrylate complex salt, water, and a nonpolar "oil" (n-decanol, p-xylene or cyclohexane) is investigated. The complex salts were prepared with short or long polyacrylates (30 or 6000 repeating units) and with hexadecyltrimethylammonium or dodecyltrimethylammonium surfactant ions. Phase diagrams and structures were determined by visual inspection and small-angle X-ray scattering analyses. Systems containing decanol display a predominance of lamellar phases, while hexagonal phases prevail in systems containing p-xylene or cyclohexane. The difference is interpreted as a result of the different locations of the oils within the surfactant aggregates. Decanol is incorporated at the aggregate interface, leading to a decrease in its curvature, which favors the appearance of lamellar structures. p-Xylene and cyclohexane, on the other hand, are mostly incorporated in the interior of the cylindrical aggregate, as reflected by its swelling as the oil content increases. The comparison of these results with those reported for similar systems with monovalent (bromide) counterions indicates a much more limited swelling of the lamellar phases with polymeric counterions by water. This limited swelling behavior is predominantly ascribed to bridging due to the polyions.  相似文献   

5.
The effect of EuCl3 on the aggregation processes of sodium dodecyl sulfate was investigated. Electrical conductivity data, combined with Eu(III) luminescence measurements, suggest that the formation of micelles involving EuCl3 and SDS occurs at low SDS concentration; the formation of these mixed aggregates was also monitored by light scattering, which indicates that the addition of EuCl3 to SDS concentration at values below the critical micelle concentration of the pure surfactant results in a much higher light scattering than that found just with SDS micelles. It was also found that the Eu(III)/DS- complexes are formed with a binding ratio which varies between 20 and 4, depending on the initial concentration of Eu(III). As the concentration increases, turbidity occurs initially, but solutions become clear subsequently. In contrast to the behavior of SDS in the presence of aluminum(III), no flocculation was observed. From the analysis of electrical conductivity data and comparison with other systems, it is suggested that growth of aggregates happens, probably with formation of nonspherical systems. At the highest concentrations these may involve just Eu(III) and DS- ions. The effect of temperature on the SDS micellization process was studied. The calculated free energy of SDS micellization is not dependent on the initial EuCl3 but is dependent on the final balance between the presence of counterions in solution (ionic strength) and the temperature.  相似文献   

6.
The effect of ionic strength on the rheological behavior of model pH-responsive nanocolloidal systems consisting of methacrylic acid-ethyl acrylate (MAA-EA) cross-linked with diallyl phthalate (DAP) was examined. Neutralization of acid groups increases the osmotic pressure exerted by counterions trapped in the polymeric network against ions in bulk solution, which is responsible for the swelling and increase in viscosity. Swelling decreases with increasing salt concentration as a result of reduced osmotic pressure inside the microgels, which is attributed to the charge shielding effect of counterions (salt) on the negatively charged carboxylate groups. Electromotive measurements using ion-selective electrodes confirmed that not all the counterions, that is, K+, remain mobile, but a fraction of these ions can penetrate the porous microgel particles to shield the negatively charged carboxylate groups. A consequence of this is that some of the Na+ counterions inside the particles are expelled, thus regaining their translational entropy, and become mobile sodium ions in the bulk solution. We successfully developed a new scaling law that relates the swelling ratio, Q, of microgels as a function of neutralization degree, alpha, cross-linked density, Nx, molar fraction of acidic units, y, and concentration of mobile counterions, CK+ and CNa+, represented as (Nx/c0)(CK+ + CNa+Q + Q2/3 proportional, variant yNxalpha. The new scaling law no longer assumes that all the counterions are trapped inside the microgels. The proportionality reduces to the form Q proportional, variant (yalphaNx)3/2 in the absence of salt, that is, CK+ + CNa+ approximately 0. By combining the results from light scattering and rheological measurements, we are able to correlate the microstructural evolution of the colloidal systems with their bulk rheological behavior.  相似文献   

7.
8.
A series of sulfonate polyester ionomers with well-defined poly(ethylene oxide) spacer lengths between phthalates and alkali metal cations as counterions are designed for improved ionic conductivity. Ion conduction in these chemically complex materials is dominated by the polymer mobility and the state of ionic aggregation. While the aggregation decreases dramatically at room temperature as the cation size increases from Li to Na to Cs, the extents of ionic aggregation of these ionomers are comparable at elevated temperatures. Both the Na and Cs ionomers exhibit thermally reversible transformation upon heating from 25 to 120 °C as isolated ion pairs aggregate. This seemingly counterintuitive aggregation of ions on heating is driven by the fact that the dielectric constant of all polar liquids decreases on heating, enhancing Coulomb interactions between ions.  相似文献   

9.
Cluster composition in aggregation processes of multiple particle species can be dynamically determined by flow cytometry if particle populations are fluorescently labeled. By flow cytometric single particle analysis, aggregates can be characterized according to the exact amount of constituent particles, allowing the detailed and separate quantification of homo- and heteroaggregation. This contribution demonstrates the application of flow cytometry for the experimental detection of heteroaggregation in a binary particle mixture of oppositely charged polystyrene (PS) particles and Rhodamine-B labeled melamine-formaldehyde (MF-RhB) particles. Experiments with different particle concentration, temperature, mixing mode, ionic strength and particle mixing ratio are presented. Aggregation kinetics are enhanced with increasing particle concentration and temperature as well as by increased shear of mixing. These results represent well-known behavior published in previous investigations and validate the performance of flow cytometry for probing heteroaggregation processes. Physical insight with a novel level of detail is gained by the quantification of de- and restabilization phenomena. At low ionic strength, "raspberry"-type aggregates with PS cores are formed by primary heteroaggregation. At moderate particle number ratios, these aggregates are electrostatically destabilized and form more complex aggregates in a secondary heteroaggregation process. At high particle number ratios (> or =50:1), the raspberry-type aggregates are electrostatically restabilized and secondary heteroaggregation is prevented. The dynamic change of aggregate charge was verified by zeta-potential measurements. The elevation of salt concentration over several orders of magnitude retards aggregation dynamics, since attractive interparticle forces are diminished by an electrostatic double layer. This indicates that heteroaggregation induced by attractive interparticle forces is faster than aggregation due to random Brownian motion. Destabilization at high ionic strength is facilitated by charged ions and no longer by MF-RhB coverage. This results in a species independent one step aggregation process.  相似文献   

10.
A transition from micelles to vesicles is reported when salts are added to a catanionic micellar solution composed of sodium dodecylcarboxylate (SL) and dodecyltrimethylammonium bromide (DTAB), with an excess of SL. The counterion binding and increase in aggregate size was monitored by mass spectrometry, rheology and dynamic light scattering measurements, whereas the vesicles were characterized by freeze-fracture and cryo-transmission microscopy experiments. The effect of counterions on the formation of vesicles was studied and compared to a previously studied catanionic system with a sulfate head group, SDS/DTAB. As in the latter case, no anion specificity was found, while large differences in the hydrodynamic radii of the formed objects were observed, when the cation of the added salt was varied. A classification of the cations could be made according to their ability to increase the measured hydrodynamic radii. It is observed that, if the sulfate headgroup of the anionic surfactant is replaced by a carboxylic group, the order of the ions is reversed, i.e. it follows the reversed Hofmeister series. Different morphologies are observed as the ionic strength of the system is increased. The aggregates are analogous to those found in the SDS/DTAB system.  相似文献   

11.
The properties of anionic-rich and cationic-rich mixtures of CTAB (cetyltrimethylammonium bromide) and SDS (sodium dodecyl sulfate) were investigated with conductometry and surface tension measurements and by determining the surfactant NMR self-diffusion coefficients. The critical aggregate concentration (CAC), surface tension reduction effectiveness(gamma(CAC)), surface excess(Gamma(max)), and mean molecular surface area (A(min)) were determined from plots of the surface tension (gamma) as a function of the total surfactant concentration. The compositions of the adsorbed films (Z) and aggregates (chi) were estimated by using regular solution theory, and then the interaction parameters in the aggregates (beta) and the adsorbed film phases (beta(sigma)) were calculated. The results showed that the synergism between the surfactants enhances the formation of mixed aggregates and reduces the surface tension. Further, the nature and strength of the interaction between the surfactants in the mixtures were obtained by calculating the values of the following parameters: the interaction parameter, beta, the size parameter, rho, and the nonrandom mixing parameter, P*. These results indicate that in ionic surfactant mixtures the optimized packing parameter has the highest value and that the size parameter can be used to account for deviations from the predictions of regular solution theory. It was concluded that, for planar air/aqueous interfaces and aggregation systems, this nonideality increases as the temperature increases. This trend is attributed to the increased dehydration of the surfactant head groups that results from increases in temperature. Further, our conductometry measurements show that the counterion binding number of mixed micelles formed in mixtures with a high CTAB content is different to those with a high SDS content. This difference is due to either their different aggregation sizes or the different interactions between the head groups and the counterions.  相似文献   

12.
Aggregates of the diacid form of tetra(p-carboxyphenyl)porphyrin (TCPP) are found to be stabilized in aqueous solution at low pH in the presence of poly(vinyl alcohol). At pH values in the range from about 1 to 4, a split Soret band is observed which is independent of counterion and tentatively assigned to a dimer species. As the pH is made lower than 1, the spectra evolve to reveal the presence of porphyrin aggregates. As in the case of the well-known aggregates of the related tetra(p-sulfonatophenyl)porphyrin (TSPP) diacid, the concentration of spectroscopically distinguishable aggregates increases with increasing ionic strength or decreasing pH. Unlike aggregates of TSPP, however, TCPP aggregates below pH 1 have visible absorption spectra which depend on the counterion, which is Cl(-) or NO(3)(-) in this study. In this work, we present visible absorption, light-scattering, and resonance Raman spectra of TCPP diacid in its monomer, dimer, and aggregated forms and attempt to understand the structural basis for counterion-dependent structure and excitonic coupling in the aggregates. Evidence is presented for intercalation of inorganic counterions between porphyrin molecules in the aggregate, an effect which to our knowledge has not been previously reported.  相似文献   

13.
14.
Aggregate formation of a didodecyldimethylammonium bromide (DDAB) and didodecyldimethylammonium chloride (DDAC) mixture in aqueous solution was investigated. The concentration vs composition diagram of aggregate formation was constructed by analyzing the surface tension, turbidity, and electrical conductivity data. The cryogenic transmission electron microscopy was applied to several representative points in the diagram and provided information of the morphology of aggregates. The sequence of monomer (m) - m + small aggregate (A) - m + A + vesicle (V) - m + V was concluded with increasing total concentration of surfactants at all mixing ratios. The compositions of counterions in A and V were estimated on the basis of thermodynamic consideration and examined from the viewpoint of asymmetry of constituents and uneven distribution between outer and inner monolayers of a vesicle bilayer. Vesicle surfaces were suggested to abound in chloride ions compared to bulk solution, which is opposite to spherical micelle surfaces.  相似文献   

15.
At low ionic strength, organic counterions dress a flexible charged polymer as measured directly by small-angle neutron scattering and neutron spin-echo spectroscopy. This dressed state, quantified by the concentration dependence of the static correlation length, illustrates the polymer-counterion coupled nature on the nanometer length scale. The counterions, made visible by selective hydrogen and deuterium labeling, undress from the polymeric template by addition of sodium chloride. The addition of this electrolyte leads to two effects: increased Debye electrostatic screening and decoupled organic counterion-polymer correlations. Neutron spin-echo spectroscopy measures a slowing down of the effective diffusion coefficient of the labeled counterions at the length scale of 8 nm, the static correlation length, indicating the nanosecond counterion dynamics mimics the polymer. These experiments, performed with semidilute solutions of tetramethylammonium poly(styrene sulfonate) [(h-TMA(+)) d-PSS], apply to relevant biopolymers including single and double stranded DNA and unfolded proteins, which undergo orchestrated dynamics of counterions and chain segments to fold, unfold, and assemble.  相似文献   

16.
We perform a comprehensive set of coarse-grained molecular dynamics simulations of ionomer melts with varying polymer architectures and compare the results to experiments in order to understand ionic aggregation on a molecular level. The model ionomers contain periodically or randomly spaced charged beads, placed either within or pendant to the polymer backbone, with the counterions treated explicitly. The ionic aggregate structure was determined as a function of the spacing of charged beads and also depends on whether the charged beads are in the polymer backbone or pendant to the backbone. The low wavevector ionomer peak in the counterion scattering is observed for all systems, and it is sharpest for ionomers with periodically spaced pendant charged beads with a large spacing between charged beads. Changing to a random or a shorter spacing moves the peak to lower wavevector. We present new experimental X-ray scattering data on Na(+)-neutralized poly(ethylene-co-acrylic acid) ionomers that show the same two trends in the ionomer peak, for similarly structured ionomers. The order within and between aggregates, and how this relates to various models used to fit the ionomer peak, is quantified and discussed.  相似文献   

17.
The absorption and fluorescence properties of a polyphenylethynylene based conjugated polyelectrolyte with sulfonate solubilizing groups (PP2) are shown to change dramatically with solution conditions because of the equilibrium between unaggregated and aggregated forms of the polymer. The fluorescence of PP2 is strongly quenched on addition of counterions such as Na+, K+, Li+, and TBA+, an effect which arises from the creation of salt stabilized aggregates. The formation of aggregates has been further corroborated by concentration and temperature studies in water and comparisons to dimethylsulfoxide solvent, in which the polymer does not aggregate. In aqueous solutions, the addition of the cationic surfactant, octadecyltrimethyl ammonium, causes the polymer aggregates to dissociate and creates polymer/surfactant aggregates that have spectral properties like that of the unaggregated polymer.  相似文献   

18.
The main source of cohesion in cement paste is the nanoparticles of calcium silicate hydrate (C-S-H), which are formed upon the dissolution of the original tricalcium silicate (C(3)S). The interaction between highly charged C-S-H particles in the presence of divalent calcium counterions is strongly attractive because of ion-ion correlations and a negligible entropic repulsion. Traditional double-layer theory based on the Poisson-Boltzmann equation becomes qualitatively incorrect in these systems. Monte Carlo (MC) simulations in the framework of the primitive model of electrolyte solution is then an alternative, where ion-ion correlations are properly included. In addition to divalent calcium counterions, commercial Portland cement contains a variety of other ions (sodium, potassium, sulfate, etc.). The influence of high concentrations of these ionic additives as well as pH on the stability of the final concrete construction is investigated through MC simulations in a grand canonical ensemble. The results show that calcium ions have a strong physical affinity (in opposition to specific chemical adsorption) to the negatively charged silicate particles of interest (C-S-H, C(3)S). This gives concrete surprisingly robust properties, and the cement cohesion is unaffected by the addition of a large variety of additives provided that the calcium concentration and the C-S-H surface charge are high enough. This general phenomenon is also semiquantitatively reproduced from a simple analytical model. The simulations also predict that the affinity of divalent counterions for a highly and oppositely charged surface sometimes is high enough to cause a "charge reversal" of the apparent surface charge in agreement with electrophoretic measurements on both C(3)S and C-S-H particles.  相似文献   

19.
采用体积排阻色谱(SEC-HPLC)和激光光散射(LLS)研究了不同浓度和离子强度下大豆蛋白热诱导聚集体的分子量分布和粒径分布。在离子强度为0时,SEC-HPLC的结果表明,热处理后的蛋白溶液主要由3部分组成,即聚集体、中间体和未聚集部分。聚集体部分随着浓度增加而逐渐增加;LLS的结果表明:体系有不均一的粒径分布,且浓度增加时体系的平均粒径增加。上述样品在较高离子强度下加热时,SEC-HPLC和LLS的结果都证明溶液中的中间体部分逐渐消失。因此,控制浓度和离子强度可以制备不同性质的大豆蛋白聚集体。  相似文献   

20.
红外光谱法研究离聚体中离子聚集状态   总被引:3,自引:0,他引:3  
红外光谱法研究离聚体中离子聚集状态冯克,高洪涛,李卓美,阎荣江(中山大学高分子研究所,广州,510275)(中国科学院长春应用化学研究所)关键词离聚体,红外光谱,离子聚集离聚体是指含有15mol%以下离子基团的聚合物,依离子含量高低,离子聚集状态分为...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号