首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 272 毫秒
1.
The contribution of ultrasound-aided particle size reduction to the efficiency of the subsequent enzymatic hydrolysis and the accompanying morphological changes of bleached cotton and linen powders were investigated. The aqueous suspensions of cellulosic powders were pretreated either with an ultrasonic bath (US-B) or with a horn-type reactor (US-H). Results revealed that the impact of US-H was more pronounced than that of the US-B. Clearly, the linen particles were more sensitive to ultrasonication than cotton. The US-H modified the particle size distribution differently for the cotton and linen powders and reduced the mean size of particles from 49 to 40 µm and from 123 to 63 µm, respectively. A significant increase in the water retention and water sorption capacity was also measured. The smaller particles with increased accessibility were preferably digested in the enzyme treatment, resulting in a considerably higher concentration of reducing sugars and an enrichment of the residual particles with a larger average size (cotton: 47 µm; linen: 66 µm).  相似文献   

2.
In ultrasonic-assisted machining, the synergistic effect of the cavitation effect and micro-abrasive particles plays a crucial role. Studies have focused on the investigation of the micro-abrasive particles, cavitation micro-jets, and cavitation shock waves either individually or in pairs. To investigate the synergy of shock waves and micro-jets generated by cavitation with micro-abrasive particles in ultrasonic-assisted machining, the continuous control equations of a cavitation bubble, shock wave, micro-jet, and micro-abrasive particle influenced by the dimensionless amount (R/R0), a particle size-velocity–pressure model of the micro-abrasive particle was established. The effects of ultrasonic frequency, sound pressure amplitude, and changes in particle size on micro-abrasive particle velocity and pressure were numerically simulated. At an ultrasonic frequency of 20 kHz and ultrasonic sound pressure of 0.1125 MPa, a smooth spherical SiO2 micro-abrasive particle (size = 5 µm) was obtained, with a maximum velocity of 190.3–209.4 m/s and pressure of 79.69–89.41 MPa. The results show that in the range of 5–50 μm, smaller particle sizes of the micro-abrasive particles led to greater velocity and pressure. The shock waves, micro-jets, and micro-abrasive particles were all positively affected by the dimensionless amount (R/R0) of cavitation bubble collapse, the larger the dimensionless quantity, the faster their velocity and the higher their pressure.  相似文献   

3.
The in-flight measurement of particle parameters (size, velocity, temperature, and local number density) can prove insight into the plasma processing of solid materials. A measurement technique for simultaneously obtaining the size, velocity, and temperature of particles entrained in high-temperature flow fields is described. Particle size and velocity are obtained from a combination laser-particle-sizing system and laser Doppler velocimeter. The particle temperature is determined by a two-color pyrometry technique and the data rate is a measure of relative particle number density. Typical measured temperatures and velocities for the 5-100 μm particles used in plasma spraying are 1600-3500 K and 100-300 m/s, respectively. Since particle size, velocity, and temperature are measured simultaneously, cold particles (<1600 K) are identified and their relative number density can be quantified. Data from two plasma spray systems, a metal one (Ni-Al) and a metal oxide one (Al2O3), are presented and their application to understanding the plasma spray-coating process is illustrated  相似文献   

4.
《X射线光谱测定》2004,33(6):414-420
Airborne particles were investigated in the central part of Riga during October 2000. Mass, black carbon and elemental concentrations of airborne particles were measured on Teflon filters from a dichotomous impactor, which samples fine (<2.5 µm) and coarse (2.5–10 µm) fractions of particles. In order to obtain more detailed information on the size distributions of different elements, a seven‐stage Batelle cascade impactor was used, in which quartz plates treated with silicone grease were utilized as backing for the different stages. Total reflection x‐ray fluorescence (TXRF) and energy‐dispersive x‐ray fluorescence (EDXRF) spectrometry were used for elemental analysis on the quartz plates and Teflon filters. The environmentally mobile part of the fine particle elements in the aerosol was determined by subtraction of x‐ray spectra measured before and after sequential leaching of the aerosol filters. The results of the different measurements show that naturally generated street dust and soil particles are dominant in coarse particles, whereas particles generated by human activities are dominant in the size fraction <0.5 µm. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
The graphite-diamond phase transition under shock-wave-induced electrodynamic compression has been studied. A sample of a carbon-containing material was loaded by axisymmetric collapse of a copper liner. The liner was acted upon by ponderomotive forces generated by pulsed electric currents with amplitudes of 2–4 MA. The collapse of the cylindrical copper liner with a velocity of ∼1 km/s produced stepped loading of the carbon material in an ampoule from 5 to 40 GPa over 4 μs. Purification of the preserved material yielded agglomerates containing polycrystalline diamond. The average size of diamond polycrystals in the agglomerates is 1–2 μm, and the agglomerate yield is ∼3%. __________ Translated from Fizika Tverdogo Tela, Vol. 46, No. 4, 2004, pp. 659–661. Original Russian Text Copyright ? 2004 by Makarevich, Rakhel, Rumyantsev, Fridman.  相似文献   

6.
The possibility of evaluating the size of metallic inclusions in lubricating oil by photoacoustic measurements in a gas-microphone cell is investigated. The photoacoustic spectra of suspensions of microscopic spherical steel particles with diameters from 5 to 70µm in an oil layer with a thickness of 20 µm are measured. A semiquantitative model of the photoacoustic effect in a suspension layer is proposed for inclusions of both small and large size in comparison with the layer thickness. It is demonstrated that the body of information obtained from the measurements considerably increases when the thickness of the oil layer is close to the size of inhomogeneous inclusions.  相似文献   

7.
Results are presented from an experimental investigation of the properties of the plasma produced by the action of a radiation pulse at the second harmonic of a Nd laser, with average intensity ~5·1014 W/cm2 in the focal spot, on flat targets consisting of porous polypropylene (CH)x with an average density of 0.02 g/cm3 (close to the critical plasma density) and with ~50 μm pores. The properties of the laser plasma obtained with porous and continuous targets are substantially different. The main differences are volume absorption of the laser radiation in the porous material and much larger spatial scales of energy transfer. The experimentally measured longitudinal ablation velocity in the porous material was equal to (1.5–3)·107 cm/s, which corresponds to a mass velocity of (3–6)·105 g/cm2· s, and the transverse (with respect to the direction of the laser beam) propagation velocity of the thermal wave was equal to ~(1–2) ·107 cm/s. The spatial dimensions of the plasma plume were ~20–30μm. The plasma was localized in a 200–400μm region inside the target. Pis’ma Zh. éksp. Teor. Fiz. 64, No. 7, 462–467 (10 October 1996)  相似文献   

8.
The aim of this study was to determine and evaluate the temporal profiles of the concentration of chemical elements in the suspended particulate matter present inside a small bronze and an iron foundry industry. To collect the samples, we used a streaker sampler that separates particles with aerodynamic diameters smaller than 10 µm (PM10) in two fractions: fine (particles with aerodynamic diameters less than 2.5 µm; PM2.5) and coarse (between 2.5 µm and less than 10 µm; PM10–2.5). The collection of samples was taken every 20 min during a total time of 8 and 5 h of molding and casting of bronze and iron, respectively. The samples collected in the form of strips on a filter (fine fraction) and an impactor (coarse fraction) were analyzed by the energy dispersive X‐ray fluorescence technique. In the excitation, an X‐ray tube with Mo target and Zr filter was used, operated at 30 mA/30 kV. For detecting the characteristic of X‐rays, a semiconductor Si(Li) detector was used, coupled to a multi‐channel spectrometer, with a 300 s excitation/detection time. The results of the temporal profiles of chemical element concentrations in coarse and fine fractions were discussed and compared with the maximum levels set by the Brazilian and international environmental agencies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Aiming at the potential implementation of aluminum as a primary fuel in powder-fueled ramjets or engines, this work seeks to investigate the ignition and combustion characteristics of a dense gas-suspended jet of micron-sized aluminum particles in a hot flow with controlled temperature and compositions. Aluminum particles with a mean diameter of 40 µm are aerosolized using a custom-made feeder and carried into the burner by a nitrogen stream. The powder jet with a particle density of up to 1–3 kg/m3 can be ignited and burned violently at a surrounding gas temperature as low as 1500 K. The lowered ignition temperature of the powder jet can be attributed to a cooperative mechanism resulting in fast reactions. Meanwhile, the ignition delay time decreases from ∼25 to ∼5 ms when the surrounding temperature increases from 1500 to 2200 K. The burning powder jet generates strong luminance and AlO emission signals detected by a spectrometer. Particle image velocimetry (PIV) and camera pyrometry are used to derive the two-dimensional velocity and average projected temperature distribution, respectively. Furthermore, a high-speed camera with a microscopic lens captures the transition from dispersed combustion to group combustion that forms a large-scale flame column wrapping the entire powder jet. The aluminum oxide produced in the columnar flame forms a large number of nanosized smoke particles in the condensation region. Finally, a numerical model considering the collective effect of the powder jet is developed to predict the particle temperature history during the ignition stage, which shows good agreement with the temperature profiles derived from camera pyrometry and PIV techniques.  相似文献   

10.
《X射线光谱测定》2005,34(2):144-152
The aim of this study was to investigate the elemental composition of airborne particles in the Khartoum area, particularly small inhalable particles of diameter ≤10 µm. Aerosol particles were collected during the period April–May 2001. The sampling was done using a dichotomous virtual impactor capable of separating airborne particles <2.5 µm in a fine mode and 2.5–10 µm particles in a coarse mode. Energy‐dispersive x‐ray fluorescence analysis was used to determine the elemental concentrations of 14 elements in the samples. Concentrations of black carbon were also measured on the two size fractions. The results obtained were compared with previous data from Khartoum and other African locations. Si, K, Ca, Ti, Mn, Fe, Zn and Sr were found to be dominant in the collected particulates. Day period collections were found to have higher elemental concentrations than those of night periods. This is attributed to higher traffic levels and wind speeds. The results show that dust aerosol transport and resuspension are the main sources that affect the quality of ambient air in the Khartoum area. The elemental concentrations from anthropogenic sources are generally low. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
We demonstrate the possibility of creating a suspension of active-media particles in a discharge tube by using an electrodynamic dispersing system. An electric discharge in an electrodynamically dispersed system of 30-μm Cu particles was studied. The velocity of Cu (30 μm), Al (30 μm), and W (6-μm flakes) particles was measured at atmospheric pressure using a laser Doppler velocimeter. The velocities were found to be in the 0.1−5-m/s range. The electric field strength required to levitate Cu, Al, and W particles was studied as a function of buffer gas (air) pressure in the range from 2 × 10−2 Torr to 1 atm. It is shown that powders can be suspended with the help of electrodynamic dispersing system at air pressure below 0.1 Torr or above 100 Torr.  相似文献   

12.
Synchrotron radiation from third‐generation high‐brilliance storage rings is an ideal source for X‐ray microbeams. The aim of this paper is to describe a microfocusing scheme that combines both a toroidal mirror and Kirkpatrick–Baez (KB) mirrors for upgrading the existing optical system for inelastic X‐ray scattering experiments at sector 3 of the Advanced Photon Source. SHADOW ray‐tracing simulations without considering slope errors of both the toroidal mirror and KB mirrors show that this combination can provide a beam size of 4.5 µm (H) × 0.6 µm (V) (FWHM) at the end of the existing D‐station (66 m from the source) with use of full beam transmission of up to 59%, and a beam size of 3.7 µm (H) × 0.46 µm (V) (FWHM) at the front‐end of the proposed E‐station (68 m from the source) with a transmission of up to 52%. A beam size of about 5 µm (H) × 1 µm (V) can be obtained, which is close to the ideal case, by using high‐quality mirrors (with slope errors of less than 0.5 µrad r.m.s.). Considering the slope errors of the existing toroidal and KB mirrors (5 and 2.9 µrad r.m.s., respectively), the beam size grows to about 13.5 µm (H) × 6.3 µm (V) at the end of the D‐station and to 12.0 µm (H) × 6.0 µm (V) at the front‐end of the proposed E‐station. The simulations presented here are compared with the experimental measurements that are significantly larger than the theoretical values even when slope error is included in the simulations. This is because of the experimental set‐up that could not yet be optimized.  相似文献   

13.
The chemical effects of the acoustic cavitation generated by ultrasound translates into the production of highly reactive radicals. Acoustic cavitation is widely explored in aqueous solutions but it remains poorly studied in organic liquids and in particular in liquid/solid media. However, several heterogeneous catalysis reactions take place in organic solvents.Thus, we sonicated trimethylene glycol and propylene glycol in the presence of silica particles (SiO2) of different sizes (5–15 nm, 0.2–0.3 µm, 12–26 µm) and amounts (0.5 wt% and 3 wt%) at an ultrasound frequency of 20 kHz to quantify the radicals generated. The spin trap 5,5-dimethyl-1-pyrrolin–N-oxide (DMPO) was used to trap the generated radicals for study by electron paramagnetic resonance (EPR) spectroscopy. We identified the trapped radical as the hydroxyalkyl radical adduct of DMPO, and we quantified it using stable radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) as a quantitation standard. The concentration of DMPO spin adducts in solutions containing silica size 12–26 µm was higher than the solution without particles. The presence of these particles increased the concentration of the acoustically generated radicals by a factor of 1.5 (29 µM for 0.5 wt% of SiO2 size 12–26 µm vs 19 µM for 0 wt%, after 60 min of sonication). Ultrasound produced fewest radicals in solutions with the smallest particles; the concentration of radical adducts was highest for SiO2 particle size 12–26 µm at 0.5 wt% loading, reaching 29 µM after 60 min sonication. Ultrasound power of 50.6 W produced more radicals than 24.7 W (23 µM and 18 µM, respectively, at 30 min sonication). Increased temperature during sonication generated more radical adducts in the medium (26 µM at 75 °C and 18 µM at 61 °C after 30 min sonication). Acoustic cavitation, in the presence of silica, increased the production of radical species in the studied organic medium.  相似文献   

14.
We applied proton microbeam particle‐induced X‐ray emission (µ‐PIXE) for mapping Ca, Zr, Ba and Yb, and atomic force microscopy (AFM) for imaging the surface landscape of a dental composite which releases Ca2+ and F? for the protection of hard dental tissues. Three areas ~250 × 250 µm2 located ~0.5–2 mm apart on a smooth surface specimen were mapped with 3.1 MeV protons focused to a ~3.0 µm spot and at ~3.9 µm pixel size sampling. The maps evidenced particles with diameters of 3.2–32 µm (Ca), 20–60 µm (Zr), ≤ 4 µm (Ba) and 10–50 µm (Yb). Cross‐section area histograms of Ca‐rich particles fitted with 2–6 Poisson functions revealed a polydisperse size distribution and substantial differences from an area to another, possibly implying large local variations of Ca2+ released in the hard tissue near a dental filling of a few millimeters in diameter. Such imbalances may lead to low local Ca2+ protection of the dental tissue, favoring the onset of secondary caries. Similarly, AFM images showed high zone‐dependent differences in the distributions of grains with apparent diameters of 1–4 µm, plausibly recognized as Ca‐ and Ba‐containing particles. In a simple model based on demineralization data, lateral diffusion of Ca2+ between adjacent domains containing high‐ and low‐area Ca‐rich grains is described by exponential concentration gradients. These gradients may generate appreciable electromotive forces, which may enhance electrochemically the local tissue demineralization. Similar effects are to be expected in the protective action of F? ions released from microgranules of YbF3 and of Ba fluoroaluminosilicate glass. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
徐伟  梁铨廷  万宝年 《光学学报》2005,25(4):57-560
介绍了三高斯拟合技术,首先用单高斯选点拟合了Hα线形分布的远翼,由谱线的多谱勒展宽得出等离子体离子温度为170 eV,再对剩余量进行双高斯拟合,从多谱勒频移求出反射和解吸粒子入射速度分别为3.0×104 m/s和1×104 m/s,从谱线辐射强度推出再循环粒子由60%反射粒子和40%解吸粒子组成。在简化模型下讨论了粒子的输运行为,算出了氢原子密度、体发射系数和粒子约束时间的分布,均与实验结果相符。分析了粒子入射速度大小对粒子约束时间的影响,结果表明,正常放电下,HT 6M托卡马克粒子约束时间在4~8 ms;反射粒子的速度大小直接决定粒子约束时间的大小和空间分布。  相似文献   

16.
In the frame of nuclear safeguards, knowledge of the chemical form (stoichiometry) of the uranium compounds present in the micrometric particulate material sampled by wiping surfaces in an inspected nuclear facility may point out the industrial process implemented in the installation. Micro‐Raman spectroscopy (MRS) coupled with scanning electron microscopy (SEM) has been used for the first time to analyze micrometer‐size particles of various uranium oxides [UO2, U3O8, UO3, and UO4 · 4(H2O)] deposited on carbon disks. Uranium particles are detected by means of SEM, and Raman analysis is then directly carried out inside the SEM measurement chamber without moving the carbon disk from SEM to MRS. When particles are deposited on appropriate carbon disks (sticky carbon tapes), despite a loss of signal‐to‐noise ratio of about an order of magnitude with regard to the stand‐alone MRS, all uranium oxides are successfully identified in particles by in‐SEM Raman analysis, obtaining similar characteristic bands as the ones obtained with the stand‐alone MRS. Moreover, with the SEM–MRS coupling, particles as small as 1 µm can be analyzed, whereas, without the SEM–MRS coupling, only particles larger than ~5 µm are efficiently analyzed, after localization inside the SEM, transfer of the sample holder into the MRS, and relocation of the particles inside the MRS. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Lines are induced on the surface of a photosensitive (FOTURAN) glass by focused femtosecond laser transverse writing with scanning velocity in a wide range of 40- 1800μm/s. The formed lines are analyzed using scanning electron microscope (SEM) and optical microscope (OM). It is observed that three distinct morphologies of lines are produced depending on the scanning velocity. Lines written in low velocity level (40 - 100 μm/s) and high velocity level (1000 - 1800 μm/s) are uniform and regular, while those written in moderate velocity level (150 - 600 μm/s) are rough. The influence of scanning velocity is explained based on different pulses overlapping or cumulative dose of laser exposure in irradiated area. Fabrication of shallow groove on the surface is also demonstrated.  相似文献   

18.
The results of experimental investigations are presented for the ignition of droplets (particles) of organic coal–water fuels (OCWFs) floating in a flow of an oxidizer using a special combustion chamber from high-temperature quartz glass. The temperature and the velocity of motion of the oxidizer vary in the ranges of 500–900 K and 0.5–3 m/s. The initial sizes (radii) of fuel droplets amounted to 0.3–1.5 mm. As the basic OCWF components, particles (of 80–100 µm in size) of brown coal “B2,” water, mazut, and waste castor and compressor oils are used. With use of the system of high-velocity video registration, the conditions providing for floating of OCWF particles without initiation of burning and with the subsequent steady ignition are established. Four modes of OCWF-droplet ignition with different trajectories of their motion in the combustion chamber are singled out. The times of the OCWF-ignition delay in dependence on the size of fuel particles and oxidizer temperatures are determined. The deviations of the OCWF-ignition-delay times obtained under conditions of suspension of a droplet on the thermocouple junction and while floating in the oxidizer flow are established.  相似文献   

19.
Influence of cathode materials (Ti, Al, Cu, TiN), ambient gases (Ar, N2, p = 0.1-1 Pa) and the arc current itself on the motion and the velocity of cathode spots in an arc coating process have been investigated with the help of a new high speed framing camera. It was found, that the cathode material causes different spot currents but in general the spot arrangement and the motion on the surface are similar. Surface contaminations due to ambient gases affect this dynamics in several ways. Insulating layers like AIN can drastically increase the instantaneous spot velocity, for example from <5 m/s on Al up to 170 m/s on AIN contaminated areas. TiN layers with a high conductivity increase the spot mobility at first. But at nearly completely contaminated surfaces (simulated by a TiN cathode), the mobility is strongly decreased. The values change from an average velocity of 6.3 m/s with a diffusion constant of 54 cm2/s (Ti, 0.01 Pa) to 2 m/s and 6.4 cm2/s at TiN. The course of the instantaneous spot velocity during the spot splitting phase was investigated too. The instantaneous spot velocity of each of the two new spots originated from the starting spot is relatively high (30–40 m/s) within the first 50 μs. The cathode material and the ambient gases are of slight influence in this phase. The movement is directed. In the further development the instantaneous spot velocity is decreasing to values under 5–10 m/s. The motion is now more and more random. Additionally it could be proved, that the lower stability limit for a stable discharge is strongly connected with the spot current, which depends on discharge conditions.  相似文献   

20.
Soft X-rays of a setup with a power from 1.5 to 5 kJ, operating with argon, were measured using X-ray pinhole cameras and SPPD 11-04 detectors. Integral measurements of X-rays in energy ranges above 1.2, 1.5, 1.8, and 2.5 keV were performed using a 4-frame pinhole camera with hole sizes of ~250 µm. Simultaneously, the X-ray yield was measured with time resolution in the energy region of > 1.8 keV using a semiconductor detector. X-ray characteristics were experimentally studied at a capacitor bank voltage of 8–14 kV and argon pressures from 1.2 to 3 Torr. The size of hot points was estimated using the pinhole camera with a hole size of ~20 µm as less than 13–25 µm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号