首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe photochemical production of C2 in the upper (d 3g) and the lower (a 3u) levels of the Swan-band transitions by 266 and 292-nm laser irradiation of flames and room-temperature flows of acetylene and ethylene. Topics treated include the spectroscopy of the Swan bands, lifetimes and quenching of the Swan-band emission, intensity dependences of the Swan-band emission in several environments, profiles of C2 in low-pressure hydrocarbon flames, and the affect of Swan-band emission on three-photon-excited fluorescence detection of atomic hydrogen in hydrocarbon flames.This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences  相似文献   

2.
This paper presents experimental evidence that using the KrF excimer laser for quantitative laser-induced fluorescence (LIF) studies of the OH A-X (3,0) system is highly problematic if the effects of both photobleaching and photochemistry are not included for laser spectral irradiances greater than 20 MW/cm2 cm-1. Pump-probe and time-resolved measurements of the OH LIF signal in an atmospheric pressure, premixed CH4-air flame at low- and high-laser-spectral-irradiance conditions show that a significant amount of OH is produced from photofragments resulting from the simultaneous 2-photon predissociation of H2O molecules in the C-X system. A 5+2-level rate-equation model that includes the effects of both photobleaching and photochemical OH production is shown to satisfactorily predict the data using a single adjustable parameter given by the effective, spectrally integrated 2-photon cross-section of H2O near 248 nm. The time-integrated OH LIF signal was found to depend on both the laser spectral irradiance and the local concentration of H2O. Additionally, use of the KrF excimer laser for 2-line rotational thermometry can produce temperature errors as great as +550 K at high laser-pulse energies. Received: 21 August 2000 / Revised version: 30 October 2000 / Published online: 21 February 2001  相似文献   

3.
The carbon-isotope selectivity in the multiphoton dissociation of CF3Br is studied in the collisional region of supersonic free jet. The isotopic abundance of12C and13C in C2F6 formed by recombination of the dissociation products is measured with a quadrupole mass spectrometer. An enrichmet factor of 9.4 is obtained for12C with the 9R(30)CO2 laser line while the factor of 6.9 is obtained for13C with the 9P(16) line.  相似文献   

4.
Two-photon laser-induced predissociative fluorescence (LIPF) of H2O is examined as a potential measurement technique of H2O concentration and temperature in flames. Two-photons of 248 nm light from a narrowband KrF laser excite H2O to the highly predissociative state in a hydrogen-air flame. The subsequent bound-free emission is observed from 400–500 nm in the flame at temperatures of 1000–2000 K and is found to be free of fluorescence interference from other flame species. This LIPF signal is not affected by collisional quenching due to the short lifetime of the predissociative state (2.5 ps). Broadband laser dispersion spectra, narrowband laser dispersion spectra, laser excitation spectra and probability density functions of the H2O fluorescence are obtained in the hydrogen flame. The H2O LIPF signal is found to be temperature sensitive and a two-line LIPF technique is needed for concentration and temperature measurement. The accuracy of a two-line LIPF technique for H2O concentration and temperature measurement is determined.  相似文献   

5.
6.
This report summarizes several recent applications of quantitative laser-induced fluorescence techniques for the determination of species concentrations and temperature in combustion processes. Several lines of further development are discussed.  相似文献   

7.
Received: 7 May 1996/Revised version: 21 October 1996  相似文献   

8.
Searching for oxygen-isotope selectivity, we investigated the infrared multiphoton dissociation of the formaldehyde trimer around 10 µm, in a range where the molecule has a degenerate and a non-degenerate CO stretch vibration and a degenerate CH2 deformation vibration. In the region of the two latter, the wavelength dependence of the dissociation yield exhibits sharp structures. They were assigned ton-photon resonances (n = 2, 3, 5) by the help of the IR spectrum in the fundamental and overtone region. The O and C selectivities were very small (1.05) near the non-degenerate CO stretch band, but surprisingly large (2–4) in the CH2 deformation, which has no isotopic shift. The selectivity is not controlled by the first (n-photon) excitation step, but only by a later step. Its assignment is attempted. The pressure dependence of the dissociation is peculiar: Only after an initial decrease, the yield exhibits the usual rise with pressure. We attribute the decrease to a relaxation which perturbs the two-photon resonance.  相似文献   

9.
2 at 1064 nm, vaporization/fragmentation of soot primary particles and aggregates occurs. Optical measurements are performed using a second laser pulse to probe the effects of these changes upon the LII signal. With the exception of very low fluences, the structural changes induced in the soot lead to a decreased LII intensity produced by the second laser pulse. These two-pulse experiments also show that these changes do not alter the LII signal on timescales less than 1 μs for fluences below the vaporization threshold. Received: 20 October 1997/Revised version: 16 February 1998  相似文献   

10.
We report infrared laser emission in the region of 3 to 5 μm from sodium vapour optically pumped by a pulsed dye laser with wavelengths ranging from 585 to 610nm. Twophoton excitation processes are believed to be responsible for the primary excitation. Both molecular transitions (4 to 5 μm) between high lying states, and atomic transitions (52 S 1/2−42 P 3/2,1/2 at 3.41 μm) have been identified.  相似文献   

11.
We describe studies of the interaction of 400 ns duration, fibre delivered, multiline (2.6–3.0 m) HF-laser pulses with cornea and retina samples in saline. In this wavelength region water exhibits strong absorption (beam penetration depth 1.6 m) and laser heating leads to the creation of a hot, high pressure, vapour cavity (laser-induced cavitation) at the fibre tip. The dynamics of vapour cavity growth have been investigated experimentally using the laser shadowgraph technique and theoretically by employing an equivalent spherical cavity model for an incompressible liquid. Measurements of ablation rates and transient acoustic pressures for cornea ablation in saline, together with scanning electron microscope evaluation of irradiated samples are used to assess the damage range and mechanisms for this mid-IR laser in a strongly absorbing fluid.  相似文献   

12.
We have investigated, both theoretically and experimentally, multiphoton-induced processes in aerosol particles using femtosecond laser pulses. More specifically, we have demonstrated that both multiphoton (1, 2 and 3 photon)-induced fluorescence (MPEF) and laser-induced breakdown (LIB) emissions are strongly enhanced in the backward direction. The backward enhancement increases from 1.8 to 35 (emission ratio between the backward direction and 90°) with increasing non-linear process order n. Application to non-linear lidar of biological aerosols is discussed. Received: 24 April 2002 / Revised version: 3 June 2002 / Published online: 2 September 2002 RID="*" ID="*"Corresponding author. Fax: +33-472/431507, E-mail: wolf@lasim.univ-lyon1.fr  相似文献   

13.
Laser-induced fluorescence from carbon atoms, excited at the two-photon resonances around 280 nm, has been detected in fuel-rich hydrocarbon flames together with Swan band emission from the C2 radical, which was non-resonantly excited at the same wavelengths. The emission from the C atom and from the C2 molecule exhibited several similarities, indicating a possible common photo-chemical origin.  相似文献   

14.
A liquid jet of either nitrogen or argon of 20 μm diameter was exposed to intense laser fields with pulse durations between 70 fs and 250 ps, leading to intensities of 1016 W cm-2 and 1013 W cm-2, respectively. The emission of extreme UV light and soft X-rays shows the characteristic lines of hydrogen-like nitrogen and carbon-like argon. For nitrogen the emitted photon flux at 250 ps was about two orders of magnitude higher than for 70 fs pulses. A weak dependence on the laser polarization with respect to the liquid jet axis was found. The kinetic energy of the emitted ions easily exceeded 100 keV for nitrogen and 200 keV for argon for a pulse duration close to 2 ps. Received: 21 August 2000 / Revised version: 20 December 2000 / Published online: 22 March 2001  相似文献   

15.
The determination of accurate temperatures from CARS N2 Q-branch spectra in premixed flames is discussed for pressures up to 40 bar. The influence of collisional line narrowing in the CARS spectra is modelled by a MEG fitting law. It takes into account collisions of N2 with CO2 and H2O. The analysis of the CARS data showed that the non-resonant background has an increasing influence on temperature with increasing pressure. Little influence on the quality of the fit between theory and experiment was found. Since there is a danger of residual systematic temperature deviations, which cannot be identified from the quality of the fit, spontaneous rotational Raman scattering is employed as an independent measuring technique.  相似文献   

16.
A kinetic model has been developed for the investigation of the novel performance of a CO laser, on which efficient extraction of laser power was obtained by exciting a subsonic gas mixture of CO/N2/He/O2 through transverse dc discharge. Kinetic equations for direct excitation by electron impact, V-V and V-R/T energy transfer, and stimulated emission are coupled with a semi-one-dimensional flow model. Careful consideration is devoted especially to the V-V transfer process of CO–N2 and N2–N2. The laser power was calculated by a constant gain method. The laser output performance, examined as a function of gas mixture ratio, temperature, flow velocity, and discharge current, was in good agreement with the experiment.  相似文献   

17.
Occurrence and influence of several self-action effects, induced in the entrance window of a time-of-flight interaction chamber, on the ion and fragment yields of the toluene molecule in the focus of a Ti:sapphire laser pulse are analyzed. Experimental data are obtained using different focusing geometries and are compared with results from numerical simulations using a nonlinear pulse propagation model as well as those from the strong-field S-matrix theory. It is shown that (a) self-focusing leads to a displacement of the focus while amplified small perturbations of the input beam result in hot spots in the spatial distribution and in an energy-dependent focus area, (b) small self-phase modulation changes the form of the spectrum and broadens it slightly. A strong increase of the toluene fragmentation appears to correlate to linear and nonlinear changes in the focal spot area, while the scenario of excitation of Raman modes proposed in an earlier publication is ruled out as the dominant effect.This revised version was published online in March 2005. In the previous version, the published online date was missing  相似文献   

18.
Stimulated emission in pulsed dye lasers was characterized in several experimental conditions by analyzing the changes in the acoustic signals generated in a dye solution, with the dye laser cavity either active or inhibited (i.e., by blocking the optical path or misaligning of the optical components). Pump energy threshold, optimum dye concentration, tuning range and maximum-emission wavelength of a rhodamine 6G dye laser were measured by this method. An approximate model for the photoacoustic signal generation consistent with the experiments is presented.Member of CONICET  相似文献   

19.
The behaviour of the lifetimes of the metastable 5d 9 6s 2 2 D 3/2 and 5d 9 6s 2 2 D 5/2 states in Au in an air/acetylene flame has been studied using the step-wise delayed laser-enhanced ionization technique. Using a new, fast and reliable, automated experimental procedure, we have conducted a systematic investigation of the lifetimes for various flame characteristics, namely lateral and vertical position in the flame and flame composition. It was found that the lifetimes of the metastable states are affected by at least three different mechanisms: i) a rather small but almost constant quenching rate, unaffected by the variations in the flame environment; ii) quenching by oxygen, which is proportional to the local partial pressure of oxygen; and iii) quenching by unburned fuel components. We have shown that by monitoring the lifetime of a metastable state as a function of various flame parameters, the conditions for local stoichiometry in the flame can be determined by this technique.  相似文献   

20.
In this work, clear FIR Raman emission in ammonia was observed when a 9P20 CO2 line was used as a pump. We have noted an intense pump depletion and strong superradiant FIR and MIR emissions. The time history of these radiations has also been recorded. The intense MIR radiation is a new line observed in the ammonia laser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号