首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The standard (p(o) = 0.1 MPa) molar enthalpies of formation of 2,3-, 2,4-, 2,5-, 2,6-, 3,4- and 3,5-dichloroanilines were derived from the standard molar energies of combustion, in oxygen, to yield CO(2)(g), N(2)(g) and HCl.600H(2)O(l), at T = 298.15 K, measured by rotating bomb combustion calorimetry. The Calvet high-temperature vacuum sublimation technique was used to measure the enthalpies of sublimation of the six isomers. These two thermodynamic parameters yielded the standard molar enthalpies of formation of the six isomers of dichloroaniline, in the gaseous phase, at T = 298.15 K. The gas-phase enthalpies of formation were also estimated by G3MP2B3 calculations, which were further extended to the computation of gas-phase acidities, proton affinities, and ionization enthalpies.  相似文献   

2.
《Fluid Phase Equilibria》2004,224(1):23-29
Molar enthalpies of vaporization of 1,2-ethanediol, 1,2-propanediol, 1,2-butanediol, 1,2-pentanediol, 1,2-hexanediol, and 1,2-octanediol were obtained from the temperature dependence of the vapor pressure measured by the transpiration method. The measured data sets were successfully checked for internal consistency. A large number of the primary experimental results on temperature dependences of vapor pressures have been collected from the literature and have been treated uniform in order to derive vaporization enthalpies at the reference temperature 298.15 K. This collection together with the experimental results reported here has helped to resolve some contradictions which have been met in the available literature.  相似文献   

3.
The standard (po =  0.1 MPa) molar enthalpies of formation for 2,3-, 2,4-, 2,5-, 3,4- and 3,5- trans -dimethoxycinnamic acids, in the gaseous phase, were derived from the standard molar enthalpies of combustion in oxygen, of the crystalline compounds, determined by static bomb combustion calorimetry at T =  298.15 K and from the literature values for the respective enthalpies of sublimation.  相似文献   

4.
The standard sublimation enthalpies of (2,4,5-trichlorophenoxy)acetonitrile and (2,4,5-trichlorophenoxy)aniline were determined by isothermal thermogravimetry using the Langmuir equation and by non-isothermal differential scanning calorimetry for comparison. The used procedure was previously tested using three reference compounds: benzoic acid, succinic acid and salicylic acid. The results compared to those reported in literature show an excellent agreement for two of the three compounds while the third agrees quite well. For (2,4,5-trichlorophenoxy)acetonitrile and (2,4,5-trichlorophenoxy)aniline, the extrapolation of data at 298.15 K were obtained, respectively: ΔsubH°(298 K)={(106±4) and (101±4)} kJ mol–1. From Clausius Clapeyron equation obtained after the determination of the vaporization constant α′, the following standard sublimation entropies for (2,4,5-trichlorophenoxy)acetonitrile and (2,4,5-trichlorophenoxy)aniline equal to ΔsubS°(298 K)=(251 and 237) J K–1 mol–1, respectively, were derived, with an error of ±4 J K–1 mol–1 equal for the studied herbicides.  相似文献   

5.
The acid—base properties of some aromatic carboxylic acids of zero charge type HA have been investigated in the mixed solvent, 80% DMSO—20% water, by means of potentiometric measurements with a glass electrode. The pKa values of the following aromatic carboxylic acids have been determined: benzoic, o-chlorobenzoic,p-chlorobenzoic, m-bromobenzoic, 2,4-dichlorobenzoic, 2,5-dichlorobenzoic, 2,6-dichlorobenzoic, 2,3,5-triiodobenzoic, 3,5-dinitrobenzoic,p-methylbenzoic, m-aminobenzoic, o-hydroxybenzoic 3,4-dihydroxybenzoic, 3,4,5-trihydroxybenzoic, o-methoxybenzoic, 2,3-dimethoxybenzoic, 5-amino-2-hydroxybenzoic, pyridine-2-carboxylic, thiophene-2-carboxylic, 1-naphthylacetic, diphenylglycolic. The mixed solvent investigated offers better titration conditions for the determination of these acids than water and some other non-aqueous solvents.  相似文献   

6.
Molar enthalpies of sublimation of 1,2-di-hydroxybenzene, 1,3-di-hydroxybenzene, and 1,4-di-hydroxybenzene were obtained from the temperature dependence of the vapor pressure measured by the transpiration method. The molar enthalpies of fusion of 1,2- and 1,4-isomers were measured by differential scanning calorimetry (DSC). A large number of the primary experimental results on the temperature dependences of vapor pressure and phase transitions have been collected from the literature and have been treated in a uniform manner in order to derive sublimation, vaporization and fusion enthalpies of di-hydroxybenzenes at the reference temperature 298.15 K. The data sets on phase transitions were checked for internal consistency. This collection together with the new experimental results reported here has helped to resolve contradictions in the available thermochemical data and to recommend consistent and reliable sublimation, vaporization and fusion enthalpies for all three isomers under study.  相似文献   

7.
Details of the construction of micro-conduction calorimeters for measuring enthalpies of vaporization (or sublimation) are described. Accuracy and precision of the calorimeters were tested by the use of a few standard reference compounds. Experimental results showed that the enthalpies of vaporization could be measured for compounds of vapor pressures of 10 Pa to 10 kPa at 298 K with uncertainty less than 0.2 per cent. Results of enthalpy of vaporization measurements for some compounds are also given. Since calorimetric cells of these calorimeters were composed of glass and PTFE, the calorimeters made it possible to measure the enthalpies of vaporization for metal corrosive compounds.  相似文献   

8.
Sergey P. Verevkin   《Thermochimica Acta》1998,310(1-2):229-235
The standard enthalpies of formation ΔfHo (liq. or cr.) at the temperature T = 298.15 K were measured using combustion calorimetry for benzophenone (A), 1-indanone (B), -tetralone (C), 9-fluorenone (D), anthrone (E) and dibenzosuberone (F). The standard enthalpies of vaporization ΔvHo or sublimation ΔsHo of A-F and 5,7-dihydro-6H-dibenzo[a,c]cyclohepten-6-one (G) were obtained from the temperature function of the vapor pressure measured in a flow system. Enthalpies of fusion ΔmH of solid compounds were measured by DSC. From the enthalpies of formation of the gaseous compounds of A-G the values of their strain enthalpies were derived and structural effects discussed.

  相似文献   


9.
[reaction: see text] This study is a multinational, multidisciplinary contribution to the thermochemistry of dimethyl1,4-cubanedicarboxylate and the corresponding isomeric, cuneane derivative and provides both structural and thermochemical information regarding the rearrangement of dimethyl 1,4-cubanedicarboxylate to dimethyl 2,6-cuneanedicarboxylate. The enthalpies of formation in the condensed phase at T = 298.15 K of dimethyl 1,4-cubanedicarboxylate (dimethyl pentacyclo[4.2.0.0.(2,5)0.(3,8)0(4,7)]octane-1,4-dicarboxylate) and dimethyl 2,6-cuneanedicarboxylate (dimethyl pentacyclo[3.3.0.0.(2,4)0.(3,7)0(6,8)]octane-2,6-dicarboxylate) have been determined by combustion calorimetry, delta(f) H(o)m (cr)/kJ x mol(-1) = -232.62 +/- 5.84 and -413.02 +/- 5.16, respectively. The enthalpies of sublimation have been evaluated by combining vaporization enthalpies evaluated by correlation-gas chromatography and fusion enthalpies measured by differential scanning calorimetry and adjusted to T = 298.15 K, delta(cr) (g)Hm (298.15 K)/kJ x mol(-1) = 117.2 +/- 3.9 and 106.8 +/- 3.0, respectively. Combination of these two enthalpies resulted in delta(f) H(o)m (g., 298.15 K)/kJ x mol(-1) of -115.4 +/- 7.0 for dimethyl 1,4-cubanedicarboxylate and -306.2 +/- 6.0 for dimethyl 2,6-cuneanedicarboxylate. These measurements, accompanied by quantum chemical calculations, resulted in values of delta(f) Hm (g, 298.15 K) = 613.0 +/- 9.5 kJ x mol(-1) for cubane and 436.4 +/- 8.8 kJ x mol(-1) for cuneane. From these enthalpies of formation, strain enthalpies of 681.0 +/- 9.8 and 504.4 +/- 9.1 kJ x mol(-1) were calculated for cubane and cuneane by means of isodesmic reactions, respectively. Crystals of dimethyl 2,6-cuneanedicarboxylate are disordered; the substitution pattern and structure have been confirmed by determination of the X-ray crystal structure of the corresponding diacid.  相似文献   

10.
The sensor and control devices of a d.s.c.-7 Perkin Elmer differential scanning calorimeter have been incorporated into a system for measurement of enthalpies of sublimation. The system was tested with four sublimation reference substances: naphthalene, iodine, benzoic acid and ferrocene between the temperatures 298.15 K and 333.15 K and at constant pressure giving the following results:The precision was greater than 1.9 per cent except for iodine for which some experimental difficulties increased the uncertainty. This system will find future application in the determination of the enthalpy of sublimation of the organic compounds that are being studied in the laboratory.  相似文献   

11.
电沉积硅烷分子印迹膜修饰电极的制备及其应用   总被引:1,自引:0,他引:1  
以3,4-二羟基苯甲酸作模板分子,在玻碳电极表面恒电位沉积四甲氧基硅烷和苯基三甲氧基硅烷,经无水乙醇将模板分子洗脱,制得硅溶胶-凝胶分子印迹膜电极.该电极能有效地抑制电化学氧化过程中3,4-二羟基苯甲酸的电聚合及其同分异构体2,4-二羟基苯甲酸对测定的干扰.实验表明,该修饰电极对3,4-二羟基苯甲酸测定的线性浓度范围为1.0×10-5~8.0×10-4mol.L-1,浓度检测下限为5.0×10-6mol.L-1.  相似文献   

12.
A DSC compositional analysis of 3 model binary systems of pharmaceutical significance has been conducted. Mixtures of known selected composition for each of the systems 3,5-dinitrobenzoic acid/benzoic acid, paracetamol/4-aminobenzoic acid and acetylsalicylic/salicylic acid were prepared and analyzed by DSC. The respective compositions derived from applications of the van't Hoff equation were correlated with the corresponding theoretical values and with the corresponding fusion temperatures and fusion enthalpies, obtained from the relevant DSC profiles. Linear correlations were found to exist between the theoretical compositions, fusion temperatures and fusion enthalpies for each of these systems and it is apparent that with suitable calibration procedures, the DSC compositional analysis method can be applied to determine the purity at the 90–95 mole% level. This level is of considerable interest in drug stability studies and has real significance in purity assays of commercial pharmaceutical preparations.  相似文献   

13.
Saturated vapor pressures at 320–370 K and the enthalpies of vaporization of dicyclohexyl esters of linear dicarboxylic acids containing two to six carbon atoms were determined by the transpiration method. Linear correlations of the enthalpies of vaporization of the esters with the number of carbon atoms in molecules and Kováts retention indices were obtained.  相似文献   

14.
The standard molar enthalpies of formation (ΔfHm0(s)/kJmol−1) for 2,3:6,7-dibenzocycloocta-2,6-dien-1-one and 2,3:7,8-dibenzocycloocta-2,7-dien-1-one [6H-11,12-dihydro-dibenzo[a,e]cycloocten-5-one (ketone 1) and 10H-11,12-dihydrodibenzo[a,d]-cycloocten-5-one (ketone 2), respectively] were derived from enthalpies of combustion, measured by means of a microbomb calorimeter. The fusion and vaporization enthalpies of these compounds were obtained from DSC and correlation gas chromatography measurements. The standard molar enthalpies of formation in the gas phase were calculated by combining the condensed phase standard molar enthalpies of formation with the fusion and vaporization enthalpies adjusted to 298.15 K. Values for ΔfHm0(g) of (−39.9±5.5) and (−14.8±5.3) kJ mol−1 were obtained for 2,3:6,7-dibenzocycloocta-2,6-dien-1-one and 2,3:7,8-dibenzocycloocta-2,7-dien-1-one, respectively. Quantum chemical calculations are reported for the compounds investigated experimentally and an additional four isomers. Isomerization enthalpies are derived from computed energies. The enthalpies of formation are also calculated by group additivity, compared with the experimental values and then correlated with the structure of the molecules investigated. The X-ray analysis of ketone 1 is also reported.  相似文献   

15.
Saturation vapor pressures and vaporization enthalpies of ethylene glycol and C1–C5 carboxylic acid disubstituted esters of normal and branched structures are determined by the transfer method in the temperature range of 295 to 327 K. Dependences of vaporization enthalpies versus the number of carbon atoms in a molecule and the retention indices are determined. An analysis of existing calculation schemes is given to help predict the vaporization enthalpy of the compounds under study.  相似文献   

16.
《Fluid Phase Equilibria》2005,227(2):283-286
Molar enthalpies of vaporization of 2-Br-phenyl isobutyl ether, 3-Br-phenyl isobutyl ether, 4-Br-phenyl isobutyl ether, and 2-Br-4-Me-phenyl isobutyl ether were obtained from the temperature dependence of the vapor pressure measured by the transpiration method. The measured data sets were successfully checked for internal consistency. The values of enthalpies of vaporization and vapor pressures of ortho-, meta-, and para-substituted benzenes are discussed in the context.  相似文献   

17.
The interactions of aluminium(III) ion with the triprotic catechol derivatives (H3L), 2,3-dihydroxybenzoic acid (2,3-DHBA), 3,4-dihydroxyphenylacetic acid (3,4-DHPA), 3,4-dihydroxybenzoic acid (3,4-DHBA), and 3,4-dihydroxyhydrocinnamic acid (3,4-DHHCA) were investigated in aqueous solution at 25.0 degrees C. The Calvin-Bjerrum titration method was adopted for the determination of formation constants of proton-ligand and aluminium(III)-ligand complexes. Potentiometric and spectroscopic results indicated that these catechol derivatives exhibit a true bidentate character. The chelation occurs via their catecholate sites, with the exception of 2,3-DHBA. In the case of 2,3-DHBA complexes, the dominant species are either the salicylate type (COO-, O-) or catecholate type (O-, O-) complex. The protonation constants of ligands and their formation constants of Al(III) complexes were also correlated. The order of decreasing stabilities of complexes is: 3,4-DHPA>3,4-DHBA>3,4-DHHCA>2,3-DHBA.  相似文献   

18.
为了研究模板分子中作用基团的数目和位置对印迹聚合物印迹效应的影响, 分别以含有羟基数目和位置不同的羟基苯甲酸化合物3,4,5-三羟基苯甲酸(3,4,5-THBA), 3,4-二羟基苯甲酸(3,4-DHBA), 2,4-二羟基苯甲酸(2,4-DHBA)和3-羟基苯甲酸(3-HBA)为模板分子, 以丙烯酰胺为功能单体, 乙二醇二甲基丙烯酸酯为交联剂和乙腈(MeCN)为致孔剂, 采用非共价本体聚合方法制备了对应的印迹聚合物, 用色谱法评价了其分子识别性能. 结果表明, 制备的印迹聚合物对相应的模板分子均具有印迹效应, 在流动相H2O/MeCN(体积比1/99)中, 各印迹聚合物对相应的模板分子3,4,5-THBA, 3,4-DHBA, 2,4-DHBA和3-HBA的印迹因子分别为5.51, 5.55, 2.60和2.03. 通过与同样条件下制备的龙胆酸(GA)、水杨酸(SA)和对-羟基苯甲酸(4-HBA)印迹聚合物对其模板分子印迹效应的比较发现, 模板分子中作用基团数目越多, 印迹效率越高; 模板分子中作用基团-COOH和-OH的相对位置对印迹效率影响很大, 当-COOH和-OH在苯环上处于对位时的印迹效率, 高于其处于间位的印迹效率; 当-COOH和-OH在苯环上处于邻位时, 由于形成分子内氢键会降低其印迹效率. 实验还发现, 3,4-DHBA的印迹聚合物可以实现其结构类似物3,4,5-THBA和2,4-DHBA的基线分离, 为生物活性组分3,4,5-THBA的分离和测定提供了依据.  相似文献   

19.
The metabolism of 2,4-dinitrotoluene (2,4-DNT), 2,4-dinitrobenzyl alcohol (2,4-DNB), 2,4-dinitrobenzaldehyde (2,4-DNBAl), 2,6-DNT, 2,6-DNB and 2,6-DNBAl in the microsomal and cytosol fractions prepared from unfortified male Wistar and male Sprague-Dawley (S.D.) rat livers was investigated. Data obtained by high-performance liquid chromatography (HPLC) indicated that the products of dinitrotoluenes (2,4-DNT and 2,6-DNT), dinitrobenzyl alcohols (2,4-DNB and 2,6-DNB), and dinitrobenzaldehydes (2,4-DNBAl and 2,6-DNBAl) in the microsomal and cytosol preparations containing nicotinamide adenine dinucleotide phosphate (NAD(P] and reduced NAD(P)(NAD(P)H) were dinitrobenzyl alcohols (2,4-DNB and 2,6-DNB), dinitrobenzaldehydes (2,4-DNBAl and 2,6-DNBAl), and dinitrobenzoic acids (2,4-DNBA and 2,6-DNBA), and dinitrobenzyl alcohols (2,4-DNB and 2,6-DNB), respectively. From these results, it was concluded that the dinitrobenzaldehydes (2,4-DNBAl and 2,6-DNBAl) were intermediates in the oxidations of dinitrobenzyl alchols (2,4-DNB and 2,6-DNB) to dinitrobenzoic acids (2,4-DNBA and 2,6-DNBA), and that the oxidations of dinitrobenzyl alcohols (2,4-DNB and 2,6-DNB) to dinitrobenzaldehydes (2,4-DNBAl and 2,6-DNBAl) and the reductions of dinitrobenzaldehydes to dinitrobenzyl alcohols (2,4-DNB and 2,6-DNB) were reversible.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Summary This paper describes the fragmentation patterns and the GC-MS quantitation possibilities of the trimethylsilyl derivatives of thirty-one aromatic carboxylic acids, using ion trap detection (ITD). Sixteen aralkyl carboxylic acids, including those containing a saturated aliphatic side chain {phenylacetic, 2-phenylbutyric, phenylglycolic (mandelic acid), β-phenyllactic, 3-hydroxyphenylacetic, β-phenylpyruvic and 3-(4-hydroxyphenyl)-propionic acids} and those with an unsaturated aliphatic side chain {cinnamic, 2-hydroxycinnamic (o-coumaric), 4-methoxycinnamic, 3-hydroxycinnamic (m-coumaric), 4-hydroxycinnamic (p-coumaric), 4-hydroxy-3-methoxycinnamic (ferulic acid), 3,4-dihydroxycinnamic (caffeic), and 4-dihydroxy-3,5-dimethoxycinnamic (sinapic) acids}, as well as, the fifteen hydroxy(methoxy) benzoic acids {benzoic, 2-hydroxybenzoic (salicylic), 3-hydroxybenzoic, 4-hydroxybenzoic, 3,5-dimethoxybenzoic, 3,4-dimethoxybenzoic (veratric), 2,6-dihydroxybenzoic (γ-resorcylic), 3-methoxy-4-hydroxybenzoic (vanillic), 2,5-dihydroxybenzoic (gentisic), 2,4-dihydroxybenzoic (β-resorcylic), 3,4-dihydroxybenzoic (protocatechuic), 3,5-dihydroxybenzoic (α-resorcylic), 2,4,5-trimethoxybenzoic (asaronic), 3,5-dimethoxy-4-hydroxybenzoic (syringic) and 3,4,5-trihydroxybenzoic (gallic) acids}, provided distinct fragmentation characteristics that were very useful for their identification and simultaneously quantitation. Based on 1–20 ng amounts of acids, very informative ions of high mass with considerable intensities ([M+TMS]+, [M+1]+), , ([M−CH3]+) were obtained. In the case of the cinnamic acid derivatives, several odd electron fragments are formed by the loss of CO, HCHO and/or Si(CH3)4 molecules. In the case of benzoic acids the molecular ion proved to be abundant in three, the [M−CH3]+ ion in nine cases out of fifteen. The special MacLafferty rearrangement product ([C6H5Si(CH3)2]+) was obtained in different yields. In addition to the TIC values, at least three, and in most cases four, selective fragment ions could be utilized for quantitation. The reproducibility of the data in the concentration range of 1–20 ng acids proved to be between 1.2 and 13.0% (R.S.D.). Presented at: Balaton Symposium on High-Performance Separation Methods, Siófok, Hungary, September 3–5, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号