首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Experimental solubility data of solid–supercritical fluids have significantly increased in the last few years, and semiempirical models are emerging as one of the best choices to fit this type of data. This work establishes a methodology to calculate sublimation pressures using this type of equations. It requires the use of Bartle’s equation to model equilibria data solid–supercritical fluids with the aim of determining the vaporization enthalpy of the compound. Using this method, low deviations were obtained by calculating sublimation pressures and sublimation enthalpies. The values of the sublimation pressures were subsequently used to successfully model different multiphasic equilibria, as solid–supercritical fluids and solid–solvent–supercritical fluids with the Peng–Robinson equation of state (without considering the sublimation pressure as an adjustable parameter). On the other hand, the sublimation pressures were also used to calculate solid sublimation properties and acetaminophen solvation properties in some solvents. Also, solubility data solid–supercritical fluids from 62 pharmaceuticals were fitted with different semiempirical equations (Chrastil, Kumar-Johnston and Bartle models) in order to present the values of solvation enthalpies in sc-CO2 and vaporization enthalpies for these compounds. All of these results highlight that semiempirical models can be used for any other purpose as well as modeling (solid + supercritical fluids) equilibria.  相似文献   

2.
There is considerable interest in performing volatilisation and evaporation measurements by thermogravimetry. A quick and simple method for determining vapour pressure using a conventional thermobalance and standard sample holders has been developed. These yield meaningful thermodynamic parameters such as the enthalpies of sublimation and vaporisation. Under favourable conditions the melting temperature and enthalpy of fusion of such compounds can be obtained. This technique has been used for the study of dyes, UV absorbers and plasticisers. The use of modulated- temperature programs for such work is also described. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The temperature dependences of vapor pressure were determined by the transpiration method and the thermodynamic functions of sublimation were calculated for six molecular crystals from the group of nonsteroidal antiinflammatory drugs, for niflumic, flufenamic, tolfenamic, mefenamic, and N-phenylanthranylic acids and diphenylamine. The influence of substituents on the enthalpies of sublimation of compounds of this class was studied. A correlation was observed between the enthalpies of sublimation under standard conditions and the temperatures of fusion.  相似文献   

4.
Molar enthalpies of sublimation of two crystal forms of caffeine were obtained from the temperature dependence of the vapour pressure measured by the transpiration method. A large number of primary experimental results on the temperature dependences of vapour pressure and phase transitions have been collected from the literature and have been treated in a uniform manner in order to derive sublimation enthalpies of caffeine at T = 298.15 K. This collection together with the new experimental results reported here has helped to resolve contradictions in the available sublimation enthalpies data and to recommend a consistent and reliable set of sublimation and formation enthalpies for both crystal forms under study. Ab initio calculations of the gaseous molar enthalpy of formation of caffeine have been performed using the G3MP2 method and the results are in excellent agreement with the selected experimental data.  相似文献   

5.
6.
Molar enthalpies of sublimation of 1,2-di-hydroxybenzene, 1,3-di-hydroxybenzene, and 1,4-di-hydroxybenzene were obtained from the temperature dependence of the vapor pressure measured by the transpiration method. The molar enthalpies of fusion of 1,2- and 1,4-isomers were measured by differential scanning calorimetry (DSC). A large number of the primary experimental results on the temperature dependences of vapor pressure and phase transitions have been collected from the literature and have been treated in a uniform manner in order to derive sublimation, vaporization and fusion enthalpies of di-hydroxybenzenes at the reference temperature 298.15 K. The data sets on phase transitions were checked for internal consistency. This collection together with the new experimental results reported here has helped to resolve contradictions in the available thermochemical data and to recommend consistent and reliable sublimation, vaporization and fusion enthalpies for all three isomers under study.  相似文献   

7.
Bomb calorimetry was used to determine the standard enthalpies of combustion and formation of eight crystalline aliphatic diacyldiperoxides with high molecular weights and low decomposition temperatures. A comparison of the calculated peroxide bond energy with the enthalpies of sublimation of these substances shows that the latter cannot in principle be determined experimentally.  相似文献   

8.
9.
Temperature dependence of saturated vapor pressure has been determined for five phenyl and furyl derivatives of acrylic acid. Processing of the experimental data has given standard enthalpy, entropy, and the Gibbs free energy of sublimation of the studied compounds. Additivity of the sublimation enthalpies has been confirmed, and enthalpies of sublimation of the constituting fragments have been calculated.  相似文献   

10.
The melting enthalpies and melting points of phenyl acridine-9-carboxylate, its eleven alkyl-substituted derivatives in the phenyl fragment and eight 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulphonates derived from them, were determined by DSC. The volatilisation enthalpies and temperatures of twelve phenyl acridine-9-carboxylates were either measured by DSC or obtained by fitting TG curves to the Clausius–Clapeyron relationship. For the compounds whose crystal structures are known, crystal lattice enthalpies were determined computationally as the sum of electrostatic, dispersive and repulsive interactions. By combining the enthalpies of formation of gaseous phenyl acridine-9-carboxylates or 9-phenoxycarbonyl-10-methylacridinium and trifluoromethanesulphonate ions, obtained by quantum chemistry methods, and the corresponding enthalpies of sublimation or crystal lattice enthalpies, the enthalpies of formation of the compounds in the solid phase were predicted. In the case of the phenyl acridine-9-carboxylates, the computationally predicted crystal lattice enthalpies correspond reasonably well to the experimentally obtained enthalpies of sublimation. Analysis of crystal lattice enthalpy contributions indicates that the crystal lattices of phenyl acridine-9-carboxylates are stabilised predominantly by dispersive interactions between molecules, whereas the crystal lattices of their quaternary salts are stabilised by electrostatic interactions between ions.  相似文献   

11.
The standard (p degrees = 0.1 MPa) molar enthalpies of formation of 2-, 3-, and 4-chloroaniline were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by rotating bomb combustion calorimetry. The Calvet high-temperature vacuum sublimation technique was used to measure the enthalpies of vaporization or sublimation of the three isomers. These two thermodynamic parameters yielded the standard molar enthalpies of formation of the three isomers of chloroaniline, in the gaseous phase, at T = 298.15 K, as 53.4 +/- 3.1 kJ.mol(-1) for 2-chloroaniline, 53.0 +/- 2.8 kJ.mol(-1) for 3-chloroaniline, and 59.7 +/- 2.3 kJ.mol(-1) for 4-chloroaniline. These values, which correct previously published data, were used to test the computational methodologies used. Therewith, gas-phase acidities, proton affinities, electron donor capacities, and N-H bond dissociation enthalpies were calculated and found to compare well with available experimental data for these parameters.  相似文献   

12.
This work presents a new approach for estimating sublimation enthalpies and vapor pressures of substituted benzenes. Proposed estimating equations were based on a collection of selected literature results of vapor pressures of ca. 240 benzene derivatives attached with 30 different substituents. Compared to experimental results, best estimates are obtained from the equations that include the temperature of fusion. A review of the results determined for substituted benzenes using two different calorimetric techniques shows that the results of enthalpies of sublimation derived from vapor pressures seem to be more reliable than those derived from the calorimetric techniques.  相似文献   

13.
The standard enthalpies of combustion, formation, fusion, and sublimation of crystalline furan-2-carboxylic and 3-(2-furyl)-2-propenoic acids are determined by experimental methods and recalculated to 298 K. The possibility of using additive calculation schemes based on the principle of group contributions to calculate the standard enthalpies of vaporization and formation of substances with similar combinations of functional fragments in the gas phase is analyzed.  相似文献   

14.
本文参照Wads设计的蒸发热量热计建立一升华热量热计。利用此升华热量热计和LKB8700蒸发热量热计, 测得如下化合物在298.15 K 时的蒸发焓和升华焓为: 化合物 升华焓(kJ mol~(-1)) 蒸发焓(kJmol~(-1))水 43.72±0.18正癸烷 51.21±0.25萘 73.26±0.921,2,3-三氯苯 75.14±0.751,2,4-三氯苯 55.06±0.501,3,5-三氯苯 72.68±0.50  相似文献   

15.
The enthalpies of combustion and formation of 1,4-dioxane-2,6-dione were determined by combustion calorimetry. The transpiration method was used to obtain the temperature dependence of compound vapor pressures and the enthalpies of sublimation and vaporization. Differential scanning calorimetry was used to measure the enthalpy of fusion. Quantum-chemical calculations of the geometric, vibrational, and energy characteristics of the compound were performed, and the enthalpy of formation of the compound in the gas phase was estimated. Statistical thermodynamics methods were used to determine the thermodynamic properties of the compound in the ideal gas state over the temperature range 0–1500 K. Strain energies of some representatives of six-membered cyclic compounds were estimated.  相似文献   

16.
The standard (p(o) = 0.1 MPa) molar enthalpies of formation of 2,3-, 2,4-, 2,5-, 2,6-, 3,4- and 3,5-dichloroanilines were derived from the standard molar energies of combustion, in oxygen, to yield CO(2)(g), N(2)(g) and HCl.600H(2)O(l), at T = 298.15 K, measured by rotating bomb combustion calorimetry. The Calvet high-temperature vacuum sublimation technique was used to measure the enthalpies of sublimation of the six isomers. These two thermodynamic parameters yielded the standard molar enthalpies of formation of the six isomers of dichloroaniline, in the gaseous phase, at T = 298.15 K. The gas-phase enthalpies of formation were also estimated by G3MP2B3 calculations, which were further extended to the computation of gas-phase acidities, proton affinities, and ionization enthalpies.  相似文献   

17.
The mean (N-O) bond dissociation enthalpies were derived for three 2-methyl-3-(R)-quinoxaline 1,4-dioxide (1) derivatives, with R = methyl (1a), ethoxycarbonyl (1b), and benzyl (1c). The standard molar enthalpies of formation in the gaseous state at T = 298.15 K for the three 1 derivatives were determined from the enthalpies of combustion of the crystalline solids and their enthalpies of sublimation. In parallel, accurate density functional theory-based calculations were carried out in order to estimate the gas-phase enthalpies of formation for the corresponding quinoxaline derivatives. Also, theoretical calculations were used to obtain the first and second N-O dissociation enthalpies. These dissociation enthalpies are in excellent agreement with the experimental results herewith reported.  相似文献   

18.
The standard molar enthalpies of formation of the 3-methyl-N-R-2-quinoxalinecarboxamide-1,4-dioxides (R = H, phenyl, 2-tolyl) in the gas phase were derived using the values for the enthalpies of combustion of the crystalline compounds, measured by static bomb combustion calorimetry, and for the enthalpies of sublimation, measured by Knudsen effusion, at T = 298.15 K. These values have also been used to calibrate a computational procedure that has been employed to estimate the gas-phase enthalpies of formation of the corresponding 3-methyl-N-R-2-quinoxalinecarboxamides and also to compute the first, second, and mean N-O bond dissociation enthalpies in the gas phase. It is found that the size of the substituent almost does not influence the computed N-O bond dissociation enthalpies; the maximum enthalpic difference is approximately 5 kJ.mol-1.  相似文献   

19.
20.
适用于TATB,RDX,HMX含能材料的全原子力场的建立与验证   总被引:1,自引:0,他引:1  
报道一个适用于三种常见的含能材料分子三硝基三氨基苯(TATB),环三亚甲基三硝胺(RDX),环四亚甲基四硝胺(HMX)的全原子力场.力场采用广泛使用的力场函数形式,其中键参数通过拟合量子化学密度泛函计算的数据获得,电荷参数和范德华参数通过拟合相应的分子晶体的物理性质(密度和升华焓)优化得到.通过计算分子和分子晶体的性质显示该力场可以用来准确地预测分子结构、分子振动频率和分子晶体的晶胞参数、密度和升华焓.进一步的验证显示该力场可用来较为准确地预测分子晶体的状态方程和机械模量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号