共查询到20条相似文献,搜索用时 31 毫秒
1.
Junji Awaka Norihito Kijima Hiroshi Hayakawa Junji Akimoto 《Journal of solid state chemistry》2009,182(8):2046-2052
We have successfully synthesized a high-purity polycrystalline sample of tetragonal Li7La3Zr2O12. Single crystals have been also grown by a flux method. The single-crystal X-ray diffraction analysis verifies that tetragonal Li7La3Zr2O12 has the garnet-related type structure with a space group of I41/acd (no. 142). The lattice constants are a=13.134(4) Å and c=12.663(8) Å. The garnet-type framework structure is composed of two types of dodecahedral LaO8 and octahedral ZrO6. Li atoms occupy three crystallographic sites in the interstices of this framework structure, where Li(1), Li(2), and Li(3) atoms are located at the tetrahedral 8a site and the distorted octahedral 16f and 32g sites, respectively. The structure is also investigated by the Rietveld method with X-ray and neutron powder diffraction data. These diffraction patterns are identified as the tetragonal Li7La3Zr2O12 structure determined from the single-crystal data. The present tetragonal Li7La3Zr2O12 sample exhibits a bulk Li-ion conductivity of σb=1.63×10−6 S cm−1 and grain-boundary Li-ion conductivity of σgb=5.59×10−7 S cm−1 at 300 K. The activation energy is estimated to be Ea=0.54 eV in the temperature range of 300–560 K. 相似文献
2.
The complex perovskite BiMn7O12 occurs with two polymorphic structures, cubic and monoclinic. Currently their crystal structures are investigated with high-resolution synchrotron powder X-ray diffraction at room temperature. Rietveld analysis reveals unusual behavior for, respectively, the oxygen and bismuth atoms in the monoclinic and cubic phases. Bond valence calculations indicate that all the Mn atoms in both the phases are in trivalent state. Possible roles of the 6s2 lone-pair electrons of Bi3+ in BiMn7O12 are discussed in comparison with the LaMn7O12 phase that is isomorphic to monoclinic BiMn7O12. Multiple roles of the lone-pair electrons are revealed, causing (i) A-site cation deficiency, (ii) octahedral tilting, (iii) A-site cation displacement, and (iv) Mn3+ Jahn-Teller (JT) distortion. Relationships between the monoclinic and cubic phases are discussed with emphasis on the MnO2 and MnO6 local structural aspects. All Mn atoms in the monoclinic polymorph have distorted coordination consistent with JT-active Mn(III) high spin, whereas for the cubic polymorph, the B-site Mn atoms show regular octahedral coordination. 相似文献
3.
Crystal structure of BaMg2Si2O7 was determined and refined by a combined powder X-ray and neutron Rietveld method (monoclinic, C2/c, no. 15, Z=8, a=7.24553(8) Å, b=12.71376(14) Å, c=13.74813(15) Å, β=90.2107(8)°, V=1266.44(2) Å3; Rp/Rwp=3.38%/4.77%). The structure contains a single crystallographic type of Ba atom coordinated to eight O atoms with C1 (1) site symmetry. Under 325-nm excitation Ba0.98Eu0.02Mg2Si2O7 exhibits an asymmetric emission band around 402 nm. The asymmetric shape of the emission band is likely associated with a small electron-phonon coupling in BaMg2Si2O7. The integrated intensity of the emission band was observed to remain constant over the temperature range 4.2-300 K. 相似文献
4.
Polycrystalline Li3Sc(BO3)2 was synthesized through the solid-state reaction, which is air-, water- and thermal-stable below about 929 °C. Its crystal structure was resolved and refined on the basis of powder X-ray diffraction data. The metal-borate framework is built up from ScO6 octahedra connected to each other by sharing common edges, corners and faces of BO3 units and LiO4 groups. Coordination surrounding of B-O in this structure, [BO3]3− group, was confirmed by an infrared absorption spectrum of an Li3Sc(BO3)2. According to the electronic structure calculated by first-principles calculations, an Li3Sc(BO3)2 is an insulator with a wide indirect energy band gap of about 4.4 eV. Considering the facile synthesis, large band gap, and thermal stability and excellent Tb3+-doped photoluminescence characteristics of this compound in general, it may be a good candidate as host of phosphors deposited on chip of the light-emitting diodes for white-color conversion. 相似文献
5.
Powder X-ray diffraction (XRD) and Raman spectroscopic study of order-disorder-phase transition with increase in the content of Gd in Nd2−yGdyZr2O7 solid solution is being reported. It has been observed from Rietveld analysis that with increase in concentration of Gd in Nd2−yGdyZr2O7, the value of the x parameter of the 48f oxygen changes from 0.332(1) to 0.343(1) with a sudden change in the slope for y=1.8, which indicates that the structure is transforming from ordered pyrochlore to disordered pyrochlore. In addition to that a sudden and drastic change in the Raman spectra including changes in the position and width of several Raman modes beyond y?1.8 has also been observed which has been correlated with increasing disorder. Based on these studies, it is suggested that there is a discontinuous order-disorder transition from ‘perfect pyrochlore’ to ‘defect pyrochlore’ phase in Nd2−yGdyZr2O7 solid solution. 相似文献
6.
Y.S. Au 《Journal of solid state chemistry》2007,180(11):3166-3171
The crystal structures of Ca2Ln3Sb3O14 (Ln=La, Pr, Nd and Y) and Ca2Sb2O7 at room temperature were refined by the Rietveld method using combined X-ray and neutron powder diffraction data. Ca2Sb2O7 adopts the weberite structure having the space group Imma. The structures of Ca2Ln3Sb3O14 are, however, neither the orthorhombic nor the tetragonal chiolite as has been suggested previously. They crystallize in the monoclinic space group I2/m11 belonging to a hitherto unknown type of deformation of the parent (orthorhombic) weberite structure. 相似文献
7.
Alberto Escudero 《Journal of solid state chemistry》2007,180(4):1436-1445
This paper examines the structural changes with temperature and composition in the Sc2Si2O7-Y2Si2O7 system; members of this system are expected to form in the intergranular region of Si3N4 and SiC structural ceramics when sintered with the aid of Y2O3 and Sc2O3 mixtures. A set of different compositions have been synthesized using the sol-gel method to obtain a xerogel, which has been calcined at temperatures between 1300 and 1750 °C during different times. The temperature-composition diagram of the system, obtained from powder XRD data, is dominated by the β-RE2Si2O7 polymorph, with γ-RE2Si2O7 and δ-RE2Si2O7 showing very reduced stability fields. Isotherms at 1300 and 1600 °C have been analysed in detail to evaluate the solid solubility of the components. Although, the XRD data show a complete solid solubility of β-Sc2Si2O7 in β-Y2Si2O7 at 1300 °C, the 29Si MAS-NMR spectra indicate a local structural change at x ca. 1.15 (Sc2−xYxSi2O7) related to the configuration of the Si tetrahedron, which does not affect the long-range order of the β-RE2Si2O7 structure. Finally, it is interesting to note that, although Sc2Si2O7 shows a unique stable polymorph (β), Sc3+ is able to replace Y3+ in γ-Y2Si2O7 in the compositional range 1.86?x?2 (where x is Sc2−xYxSi2O7) as well as in δ-Y2Si2O7 for compositions much closer to the pure Y2Si2O7. 相似文献
8.
Najoua Ouerfelli Daniele Mazza Mohamed Faouzi Zid 《Journal of solid state chemistry》2007,180(4):1224-1229
A new solid solution TlFe0.22Al0.78As2O7 has been synthesized by a solid-state reaction. The structure of the title compound has been determined from a single-crystal X-ray diffraction and refined to final values of the reliability factors: R(F2)=0.030 and wR(F2)=0.081 for 1343 independent reflections with I>2σ(I). It crystallizes in the triclinic space group P-1, with a=6.296(2) Å, b=6.397(2) Å, c=8.242(2) Å, α=96.74(2)°, β=103.78(2)°, γ=102.99(3)°, V=309.0(2) Å3 and Z=2. The structure can be described as a three-dimensional framework containing (Fe/Al)O6 octahedra connected through As2O7 groups. The metallic units and diarsenate groups share oxygen corners to form a three-dimensional framework with interconnected tunnels parallel to the a, b and c directions, where Tl+ cations are located. The ionic conductivity measurements are performed on pellets of the polycrystalline powder. At 683 K, The conductivity value is 5.23×10−6 S cm−1 and the ionic jump activation energy is 0.656 eV. The bond valence analysis reveals that the ionic conductivity is ensured by Tl+ along the [001] direction. 相似文献
9.
Hisanori Yamane Ryouji Tanimura Junichi Takahashi Masahiko Shimada 《Journal of solid state chemistry》2006,179(1):289-295
New compounds CaY2Ge3O10 and CaY2Ge4O12 were prepared by heating mixtures of CaCO3, Y2O3 and GeO2 at 1200 °C. CaY2Ge3O10 is stable at 1300 °C, while CaY2Ge4O12 decomposes into a melt and CaY2Ge3O10 at approximately 1250 °C. We obtained single crystals of CaY2Ge3O10 by cooling a sample with an initial composition of Ca:Y:Ge=1:2:8 from 1300 °C with a rate of −6 °C/h. The crystal structure of CaY2Ge3O10 was determined by single crystal X-ray diffraction. CaY2Ge3O10 crystallizes in the monoclinic space group P21/c with a=6.0906(8), b=6.8329(8), and β=109.140(3)°, Z=4, and R1=0.029 for I>2σ(I). In the structure of CaY2Ge3O10, Ca and Y atoms are situated disorderly in three 7-fold coordination sites between isolated germanate groups of triple GeO4 tetrahedra, Ge3O10. The structural formula of CaY2Ge3O10 is expressed as (Ca0.45Y0.55)(Ca0.46Y0.54)(Ca0.09Y0.91)Ge3O10. The crystal structure of CaY2Ge4O12 was analyzed by the Rietveld method for the X-ray powder diffraction pattern. CaY2Ge4O12 is isotypic with SrNa2P4O12, crystallizing in the orthorhombic space group P4/nbm, a=9.99282(6), , Z=2, Rwp=0.092, Rp=0.067. CaY2Ge4O12 contains four-membered GeO4-tetrahedra rings, Ge4O12. Eight-fold coordinated square-anitiprism sites and 6-fold octahedral sites between the layers of the Ge4O12 rings are occupied by Y atom and Ca/Y atoms, respectively The structural formula is Y(Ca0.5Y0.5)2Ge4O12. 相似文献
10.
Ana I. Becerro Alberto Escudero Dominique Massiot 《Journal of solid state chemistry》2004,177(8):2783-2789
This paper describes the 89Y MAS-NMR spectra for all the established polymorphs of Y2Si2O7 (y, α, β, γ and δ) and Y2SiO5 (X1 and X2). The combination of our spectroscopic data with the structural information published up to now from diffraction data permits the revision and correction of mistakes which appear in the literature. Finally, the influence of different structural factors, such as yttrium coordination number and Y-O distances on the 89Y NMR isotropic chemical shift is analyzed. 相似文献
11.
Cr2V4O13, a tetravanadate of Cr3+ has been prepared by repeated heating of stoichiometric amounts of Cr2O3 and V2O5 and its crystal structure is refined by Rietveld refinement of the powder XRD data. This compound crystallizes in a monoclinic lattice with unit cell parameters: a=8.2651(3), b=9.2997(3), c=14.5215(5) Å, β=102.618(3)°, V=1089.21(6) Å3 and Z=4 (Space group: P21/c). The U shaped (V4O13)6− formed by corner connected VO4 tetrahedra links the Cr2O10 (dimers of two edge shared CrO6 octahedra) forming a three dimensional network structure of Cr2V4O13. This compound is stable up to 635 °C and peritectically decomposes to orthorhombic CrVO4 and V2O5 above this temperature. A possible long range antiferromagnetic ordering below 10 K is suggested from the squid magnetometry and electron paramagnetic resonance (epr) spectroscopic studies of Cr2V4O13. 相似文献
12.
Ivan V. Ogorodnyk Igor V. Zatovsky Vyacheslav N. Baumer 《Journal of solid state chemistry》2006,179(12):3681-3687
The single crystals of caesium magnesium titanium (IV) tri-oxo-tetrakis-diphosphate bis-monophosphate, Cs3.70Mg0.60Ti2.78(TiO)3(P2O7)4(PO4)2, crystallize in sp. gr. P-1 (No. 2) with cell parameters a=6.3245(4), b=9.5470(4), c=15.1892(9) Å, α=72.760(4), β=85.689(5), γ=73.717(4), z=1. The titled compound possesses a three-dimensional tunnel structure built by the corner-sharing of distorted [TiO6] octahedra, [Ti2O11] bioctahedra, [PO4] monophosphate and [P2O7] pyrophosphate groups. The Cs+ cations are located in the tunnels. The partial substitution of Ti positions with Mg atoms is observed. The negative charge of the framework is balanced by Cs cations and Mg atoms leading to pronounced concurrency and orientation disorder in the [P2O7] groups, which coordinate both. 相似文献
13.
Rietveld profile analysis of X-ray diffraction data was carried out to determine the symmetry and crystal structures of the double perovskite Ba2InTaO6. Contrary to a recent study of Raman spectroscopy, we find no evidence that Ba2InTaO6 adopts the tetragonal space group P4/mnc of the tilt system a0a0c+. Instead, it has cubic symmetry with the space group Fm3¯m in the temperature range 82-723 K. In Ba2InTaO6 the ordering between In(III) and Ta(V) cations is a difficult process requiring prolonged heat treatment at high temperature. 相似文献
14.
The structures of Li2MO3 (M=Ir, Pt) can be derived from the well-known Li-ion battery cathode material, LiCoO2, through ordering of Li+ and M4+ ions in the layers that are exclusively occupied by cobalt in LiCoO2. The additional cation ordering lowers the symmetry from rhombohedral (R-3m) to monoclinic (C2/m). Unlike Li2RuO3 no evidence is found for a further distortion of the structure driven by formation of metal-metal bonds. Thermal analysis studies coupled with both ex-situ and in-situ X-ray diffraction measurements show that these compounds are stable up to temperatures approaching 1375 K in O2, N2, and air, but decompose at much lower temperatures in forming gas (5% H2:95% N2) due to reduction of the transition metal to its elemental form. Li2IrO3 undergoes a slightly more complicated decomposition in reducing atmospheres, which appears to involve loss of oxygen prior to collapse of the layered Li2IrO3 structure. Electrical measurements, UV-visible reflectance spectroscopy and electronic band structure calculations show that Li2IrO3 is metallic, while Li2PtO3 is a semiconductor, with a band gap of 2.3 eV. 相似文献
15.
A series of compositions with the general formula RE2Hf2O7 (RE=Dy, Ho, Er, Tm, Y and Lu) was prepared by a standard solid-state route and characterized by powder X-ray diffraction (XRD) and Raman spectroscopy. As per theoretical modeling reported in literature, some of these materials were predicted to exist in pyrochlore lattice. However, a careful X-ray diffraction, Raman spectroscopic and synchrotron radiation-XRD study revealed that under the experimental conditions used in the present investigation, out of all the RE2Hf2O7 samples only Dy2Hf2O7 has got a tendency to form a pyrochlore structure. All the other (Ho, Er, Tm, Lu, Y) hafnates crystallize in a defect-fluorite structure. In order to further ascertain these inferences, a few more RE2Hf2O7 samples (La, Nd, Sm) i.e., with larger RE3+ ions were also prepared and the results were compared. 相似文献
16.
T. Pagnier C. Galven J.L. Fourquet M.P. Crosnier-Lopez 《Journal of solid state chemistry》2009,182(2):317-326
The crystal structure of the Ruddlesden-Popper layered perovskite Li2SrTa2O7 has been characterized at various temperatures between −185 and 300 °C by several techniques: X-ray and neutron powder diffraction, single crystal diffraction, transmission electron microscopy and Raman spectroscopy. The low temperature structure has been confirmed to be orthorhombic Cmcm with a small octahedra antiphase tilting (ΦΦ0) (ΦΦ0) inside the perovskite blocks. With temperature, the tilting progressively vanishes leading around 230 °C to a tetragonal symmetry (S.G. I4/mmm). This reversible phase transition, followed by X-ray and neutron thermodiffraction and thermal Raman measurements, is considered as of second order. An attribution of the Raman bands based on normal mode analysis is proposed. 相似文献
17.
V.V. Politaev V.B. Nalbandyan B.S. Medvedev E.S. Shvetsova 《Journal of solid state chemistry》2007,180(3):1045-1050
Phase relations in the MnO-SiO2-Li4SiO4 subsystem have been investigated by X-ray diffraction after solid-state reactions in hydrogen at 950-1150 °C. Both cation-deficient and cation-excess solid solutions Li2+2xMn1−xSiO4 (−0.2?x?0.2) based on Li2MnSiO4 have been found. According to Rietveld analysis, Li2MnSiO4 (monoclinic, P21/n, a=6.3368(1), b=10.9146(2), c=5.0730(1) Å, β=90.987(1)°) is isostructural with γII-Li2ZnSiO4 and low-temperature Li2MgSiO4. All components are in tetrahedral environment, (MnSiO4)2− framework is built of four-, six- and eight-member rings of tetrahedra. Testing Li2MnSiO4 in an electrochemical cell showed that only 4% Li could be extracted between 3.5 and 5 V against Li metal. These results are discussed in comparison with those for recently reported orthorhombic layered Li2MnSiO4 and other tetrahedral Li2MXO4 phases. 相似文献
18.
The lithium double diphosphates LiCryFe1−yP2O7 have been investigated by X-ray diffraction, SQUID measurements and vibrational spectroscopy. The Rietveld refinements based on the XRD patterns show the existence of a continuous solid solution over the whole composition range (0?y?1.0) with a continuous evolution of the monoclinic unit cell parameters (S.G. P21). The transition metal ions connect the diphosphate anions forming a three-dimensional network with channels filled by Li+ cations expected to exhibit high mobility. All compounds order magnetically at low temperatures due the Fe-Fe interactions. The ordering temperature decreases with increasing Cr content. The slope in Curie-Weiss fits to the 1/χ vs T data in the paramagnetic domain clearly shows the existence of Fe3+ and Cr3+ in their high spin states, and a ferromagnetic component is clearly detected for y=0, 0.2 and 0.4. IR spectra have been interpreted using factor group analysis. The small shift of the frequencies is due to the influence of the chromium amount. The POP angles were estimated using the Lazarev's relationship. 相似文献
19.
The crystal structure of Ca5Te3O14 at room temperature was studied by the Rietveld method using combined X-ray and neutron powder diffraction data. The compound crystallizes in the space group Cmca with the lattice parameters a=10.4268(2) Å, b=10.3908(2) Å and c=10.4702(2) Å. The structure of Ca5Te3O14 is chiolite-like and consists of a framework of corner-linked TeO6 octahedral layers in which a linear TeO2 group of every fourth octahedron is substituted by a Ca atom. This type of structure was previously observed in BaSr4U3O14. The relationship between the chiolite-like structure and the fluorite structure is discussed. 相似文献
20.
Koichiro Fukuda Miyuki Hisamura Nobuyuki Tera 《Journal of solid state chemistry》2007,180(6):1809-1815
A new quaternary layered carbide, Zr2[Al3.56Si0.44]C5, has been synthesized and characterized by X-ray powder diffraction, transmission electron microscopy and thermopower and electrical conductivity measurements. The crystal structure was successfully determined using direct methods, and further refined by the Rietveld method. The crystal is trigonal (space group R3m, Z=3) with lattice dimensions of a=0.331059(5), c=4.09450(5) nm and V=0.38864(1) nm3. The final reliability indices calculated from the Rietveld refinement were Rwp=6.24%, Rp=4.21% and RB=0.82%. The crystal structure is composed of electroconductive NaCl-type ZrC slabs separated by Al4C3-type [Al3.56Si0.44]C3 layers. This material had thermoelectric properties superior to those of the ternary layered carbides Zr2Al3C4 and Zr3Al3C5, with the power factor reaching 7.6×10−5W m−1 K−2. 相似文献