首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrothermal reaction of UO3, WO3, and CsIO4 leads to the formation of Cs6[(UO2)4(W5O21)(OH)2(H2O)2] and UO2(IO3)2(H2O). Cs6[(UO2)4(W5O21)(OH)2(H2O)2] is the first example of a hydrothermally synthesized uranyl tungstate. It's structure has been determined by single-crystal X-ray diffraction. Crystallographic data: tetragonal, space group Icm, , , Z=4, MoKα, , R(F)=2.84% for 135 parameters with 2300 reflections with I>2σ(I). The structure is comprised of two-dimensional anionic layers that are separated by Cs+ cations. The coordination polyhedra found in the novel layers consist of UO7 pentagonal bipyramids, WO6 distorted octahedra, and WO5 square pyramids. The UO7 polyhedra are formed from the binding of five equatorial oxygen atoms around a central uranyl, UO22+, unit. Both bridging and terminal oxo ligands are employed in forming the WO5 square pyramidal units, while oxo, hydroxo, and aqua ligands are found in the WO6 distorted octahedra. In the layers, four (UO2)O5 polyhedra corner share with equatorial oxygen atoms to form a U4O24 tetramer entity with a square site in the center; a tungsten atom populates the center of each of these sites to form a U4WO25 pentamer unit. The pentamer units that result are connected in two dimensions by edge-shared dimers of WO6 octahedra to form the two-dimensional [(UO2)4(W5O21)(OH)2(H2O)2]6- layers. The lack of inversion symmetry in Cs6[(UO2)4(W5O21)(OH)2(H2O)2] can be directly contributed to the WO5 square pyramids found in the pentamer units. In the structure, all of these polar polyhedra align their terminal oxygens in the same orientation, along the c axis, thus resulting in a polar compound.  相似文献   

2.
Two new mixed organic-inorganic uranyl molybdates, (C6H14N2)3[(UO2)5(MoO4)8](H2O)4 (1) and (C2H10N2)[(UO2)(MoO4)2] (2), have been obtained by hydrothermal methods. The structure of 1 [triclinic, , Z=1, a=11.8557(9), b=11.8702(9), c=12.6746(9) Å, α=96.734(2)°, β=91.107(2)°, γ=110.193(2)°, V=1659.1(2) Å] has been solved by direct methods and refined on the basis of F2 for all unique reflections to R1=0.058, which was calculated for the 5642 unique observed reflections (|Fo|?4σF). The structure contains topologically novel sheets of uranyl square bipyramids, uranyl pentagonal bipyramids, and MoO4 tetrahedra, with composition [(UO2)5(MoO4)8]6−, that are parallel to (−101). H2O groups and 1,4-diazabicyclo [2.2.2]-octane (DABCO) molecules are located in the interlayer, where they provide linkage of the sheets. The structure of 2 [triclinic, , Z=2, a=8.4004(4), b=11.2600(5), c=13.1239(6) Å, α=86.112(1)°, β=86.434(1)°, γ=76.544(1)°, V=1203.14(10) Å] has been solved by direct methods and refined on the basis of F2 for all unique reflections to R1=0.043, which was calculated for 5491 unique observed reflections (|Fo|?4σF). The structure contains topologically novel sheets of uranyl pentagonal bipyramids and MoO4 tetrahedra, with composition [(UO2)(MoO4)2]2−, that are parallel to (110). Ethylenediamine molecules are located in the interlayer, where they provide linkage of the sheets. All known topologies of uranyl molybdate sheets of corner-sharing U and Mo polyhedra can be described by their nodal representations (representations as graphs in which U and Mo polyhedra are given as black and white vertices, respectively). Each topology can be derived from a simple black-and-white graph of six-connected black vertices and three-connected white vertices by deleting some of its segments and white vertices.  相似文献   

3.
Under mild hydrothermal conditions UO2(NO3)2·6H2O, Hg2(NO3)2·2H2O, and Na2HAsO4·7H2O react to form [Hg5O2(OH)4][(UO2)2(AsO4)2] (HgUAs-1). Single crystal X-ray diffraction experiments reveal that HgUAs-1 possesses a pseudo-layered structure consisting of two types of layers: and . The layers are complex, and contain three crystallographically unique Hg centers. The coordination environments and bond-valence sum calculations indicate that the Hg centers are divalent. The layers belong to the Johannite topological family. The and layers are linked to each other through μ2-O bridges that include Hg?O=U=O interactions.  相似文献   

4.
The reaction of UO3 and TeO3 with a KCl flux at 800 °C for 3 days yields single crystals of K4[(UO2)5(TeO3)2O5]. The structure of the title compound consists of layered, two-dimensional sheets arranged in a stair-like topology separated by potassium cations. Contained within these sheets are one-dimensional uranium oxide ribbons consisting of UO7 pentagonal bipyramids and UO6 tetragonal bipyramids. The ribbons are in turn linked by corner-sharing with trigonal pyramidal TeO3 units to form sheets. The lone-pair of electrons from the TeO3 groups are oriented in opposite directions with respect to one another on each side of the sheets rendering each individual sheet nonpolar. The potassium cations form contacts with nearby tellurite units and axial uranyl oxygen atoms. Crystallographic data (193 K, MoKα, ): triclinic, space group , , , , α=99.642(1)°, β=93.591(1)°, γ=100.506(1)°, , Z=1,R(F)=4.19% for 149 parameters and 2583 reflections with I>2σ(I).  相似文献   

5.
Three new hydrated scandium selenites have been hydrothermally synthesized as single crystals and structurally and physically characterized. Sc2(SeO3)3·H2O crystallizes as a new structure type containing novel ScO7 pentagonal bipyramidal and ScO6+1 capped octahedral coordination polyhedra. Sc2(SeO3)3·3H2O contains typical ScO6 octahedra and is isostructural with its M2(SeO3)3·3H2O (M=Al, Cr, Fe, Ga) congeners. CsSc3(SeO3)4(HSeO3)2·2H2O contains near-regular ScO6 octahedra and has essentially the same structure as its indium-containing analogue. All three phases contain the expected pyramidal [SeO3]2- selenite groups. Crystal data: Sc2(SeO3)3·3H2O, Mr=524.85, trigonal, R3c (No. 161), , , , Z=6, R(F)=0.018, wR(F2)=0.036; Sc2(SeO3)3·H2O, Mr=488.82, orthorhombic, P212121 (No. 19), , , , , Z=4, R(F)=0.051, wR(F2)=0.086; CsSc3(SeO3)4(HSeO3)2·2H2O, Mr=1067.60, orthorhombic, Pnma (No. 62), , , , , Z=4, R(F)=0.035, wR(F2)=0.070.  相似文献   

6.
Two zinc phosphates (ZnPO), [H2(N2C9H20)]·[Zn(H2PO4)4] (I) and [H2(N2C9H20)]2·[Zn2(HPO4)3(H2PO4)2]·H2O (II), are synthesized under hydrothermal conditions using 4-amino-2.2.6.6-tetramethylpiperidine as organic template. I crystallizes in space group with , , , α=92.57(1)°, β=89.76(1)°, γ=102.16(2)°, and Z=2. Its structure, refined to R=0.029 and Rw=0.076 for 4279 independent reflections, consists of [Zn(H2PO4)4]2− clusters held together through strong hydrogen bonds to form pseudo-layers between which the doubly protonated amine molecules are inserted. II is monoclinic, C2, with , , , β=103.72(5)°, and Z=4 (R=0.079, Rw=0.268, 2477 independent reflections). The structure of II consists of [Zn2(HPO4)3(H2PO4)2]4− inorganic (2D) layers built up from vertex-sharing [ZnO4] and [(H2/H)PO4] tetrahedra. Organic cations and water molecules ensure the connection between these layers via hydrogen bonds. It is shown that numerous (1D), (2D), e.g., [H2(N2C9H20)]2·[Zn2(HPO4)3(H2PO4)2]·H2O, and (3D) (ZnPO) result from the condensation of the [Zn(H2PO4)4]2− clusters.  相似文献   

7.
A new vanadium(III) phosphite, (C4H8N2H4)0.5(C4H8N2H3)[V4(HPO3)7(H2O)3]1.5H2O, has been synthesized hydrothermally by using V2O5, H3PO3 as reactants, piperazine as the structure-directing agent. The as-synthesized product was characterized by powder X-ray diffraction, IR spectroscopy, inductively coupled plasma analysis, thermogravimetric analysis, and SQUID magnetometer. Single-crystal X-ray diffraction analysis shows that the title compound crystallized in the trigonal space group (No. 165) with the parameters: , , and Z=4. Its structure is built up by alternation of octahedral VO6 or VO5(H2O) and pseudo-pyramidal HPO3 units to form infinite 2D layers, and these layers are interconnected by sharing vertex-oxygen with octahedral VO6 units to generate a 3D open-framework structure with 12-membered ring channels in a and b directions, respectively, where there exist entrapped diprotonated and mono-protonated piperazine cations, and water molecules. Magnetic measurement indicates that paramagnetic behavior is observed down to 4 K.  相似文献   

8.
Three new uranyl tungstates, A8[(UO2)4(WO4)4(WO5)2] (A=Rb (1), Cs (2)), and Rb6[(UO2)2O(WO4)4] (3), were prepared by high-temperature solid-state reactions and their structures were solved by direct methods on twinned crystals, refined to R1=0.050, 0.042, and 0.052 for 1, 2, and 3, respectively. Compounds 1 and 2 are isostructural, monoclinic P21/n, (1): a=11.100(7), b=13.161(9), , β=90.033(13)°, , Z=8 and (2): , , , β=89.988(2)°, , Z=8. There are four symmetrically independent U6+ sites that form linear uranyl [O=U=O]2+ cations with rather distorted coordination in their equatorial planes. There are six W positions: W(1) and W(2) have square-pyramidal coordination (WO5), whereas W(3), W(4), W(5), and W(6) are tetrahedrally coordinated. The structures are based upon a novel type of one-dimensional (1D) [(UO2)4(WO4)4(WO5)2]4− chains, consisting of WU4O25 pentamers linked by WO4 tetrahedra and WO5 square pyramids. The chains run parallel to the a-axis and are arranged in modulated pseudo-2D-layers parallel to (0 1 0). The A+ cations are in the interlayer space between adjacent pseudo-layers and provide a 3D integrity of the structures. Compounds 1 and 2 are the first uranyl tungstates with 2/3 of W atoms in tetrahedral coordination. Such a high concentration of low-coordinated W6+ cations is probably responsible for the 1D character of the uranyl tungstate units. The compound 3 is triclinic, Pa=10.188(2), b=13.110(2), , α=97.853(3), β=96.573(3), γ=103.894(3)°, , Z=4. There are four U positions in the structure with a typical coordination of a pentagonal bipyramid that contain uranyl ions, UO22+, as apical axes. Among eight W sites, the W(1), W(2), W(3), W(4), W(5), and W(6) atoms are tetrahedrally coordinated, whereas the W(7) and W(8) cations have distorted fivefold coordination. The structure contains chains of composition [(UO2)2O(WO4)4]6− composed of UO7 pentagonal bipyramids and W polyhedra. The chains involve dimers of UO7 pentagonal bipyramids that share common O atoms. The dimers are linked into chains by sharing corners with WO4 tetrahedra. The chains are parallel to [−101] and are arranged in layers that are parallel to (1 1 1). The Rb+ cations provide linkage of the chains into a 3D structure. The compound 1 has many structural and chemical similarities to its molybdate analog, Rb6[(UO2)2O(MoO4)4]. However, the compounds are not isostructural. Due to the tendency of the W6+ cations to have higher-than-fourfold coordination, part of the W sites adopt distorted fivefold coordination, whereas all Mo atoms in the Mo compound are tetrahedrally coordinated. Distribution of the WO5 configurations along the chain extension does not conform to its ‘typical’ periodicity. As a result, both the chain identity period and the unit-cell volume are doubled in comparison to the Mo analog, which leads to a new structure type.  相似文献   

9.
Three manganese oxalates have been hydrothermally synthesized, and their structures determined by single-crystal X-ray diffraction. MnC2O4·2H2O (I) is orthorhombic, P212121, , , , , Z=4, final R, Rw=0.0832, 0.1017 for 561 observed data (I>3σ(I)). The one-dimensional structure consists of chains of oxalate-bridged manganese centers. [C4H8(NH2)2][Mn2(C2O4)3] (II) is triclinic, , , , , α=81.489(2)°, β=81.045(2)°, γ=86.076(2)°, , Z=1, final R, Rw=0.0467, 0.0596 for 1773 observed data (I > 3σ (I)). The three-dimensional framework is constructed from seven coordinate manganese and oxalate anions. The material contains extra-framework diprotonated piperazine cations. Mn2(C2O4)(OH)2 (III) is monoclinic, P21/c, , , , β=91.10(3)°, , Z=1, final R1, wR2=0.0710, 0.1378 for 268 observed data (I>2σ (I)). The structure is also three dimensional, with layers of MnO6 octahedra pillared by oxalate anions. The hydroxide group is found bonded to three manganese centers resulting in a four coordinate oxygen.  相似文献   

10.
The reactions of UO3 and TeO3 with KCl, RbCl, or CsCl at 800 °C for 5 d yield single crystals of A2[(UO2)3(TeO3)2O2] (A=K (1), Rb (2), and Cs (3)). These compounds are isostructural with one another, and their structures consist of two-dimensional sheets arranged in a stair-like topology separated by alkali metal cations. These sheets are comprised of zigzagging uranium(VI) oxide chains bridged by corner-sharing trigonal pyramidal TeO32− anions. The chains are composed of dimeric, edge-sharing, pentagonal bipyramidal UO7 moieties joined by edge-sharing tetragonal bipyramidal UO6 units. The lone-pair of electrons from the TeO3 groups are oriented in opposite directions with respect to one another on each side of the sheets rendering each individual sheet non-polar. The alkali metal cations form contacts with nearby tellurite oxygen atoms as well as with oxygen atoms from the uranyl moieties. Crystallographic data (193 K, MoKα, ): 1, triclinic, space group , , , , α=101.852(1)°, β=102.974(1)°, γ=100.081(1)°, , Z=2, R(F)=2.70% for 98 parameters and 1697 reflections with I>2σ(I); 2, triclinic, space group , , , , α=105.590(2)°, β=101.760(2)°, γ=99.456(2)°, , Z=2, R(F)=2.36% for 98 parameters and 1817 reflections with I>2σ(I); 3, triclinic, space group , , , , α=109.301(1)°, β=100.573(1)°, γ=99.504(1)°, , Z=2, R(F)=2.61% for 98 parameters and 1965 reflections with I>2σ(I).  相似文献   

11.
The uranyl vanadates A2(UO2)3(VO4)2O (A=Li, Na) have been synthesized by solid-state reaction and the structure of the Li compound was solved from single-crystal X-ray diffraction. The crystal structure is built from chains of edge-shared U(2)O7 pentagonal bipyramids alternatively parallel to - and -axis and further connected together to form a three-dimensional (3-D) arrangement. The perpendicular chains are hung on both sides of a sheet parallel to (001), formed by U(1)O6 square bipyramids connected by VO4 tetrahedra, and derived from the autunite-type sheet. The resulting 3-D framework creates non-intersecting channels running down the - and -axis formed by empty face-shared oxygen octahedra, the Li+ ions are displaced from the center of the channels and occupy the middle of one edge of the common face. The peculiar position of the Li+ ion together with the full occupancy explain the low conductivity of Li2(UO2)3(VO4)2O compared with that of Na(UO2)4(VO4)3 containing the same type of channels half occupied by Na+ ions in the octahedral sites.Crystallographic data for Li2(UO2)3(VO4)2O: tetragonal, space group I41/amd, , , , Z=4, ρmes=5.32(2) g/cm3, ρcal=5.36(3) g/cm3, full-matrix least-squares refinement basis on F2 yielded, R1=0.032, wR2=0.085 for 37 refined parameters with 364 independent reflections with I?2σ(I).  相似文献   

12.
13.
A hydrothermal reaction of a mixture of cobalt (II) oxalate, phosphorous acid, piperazine and water at 150 °C for 96 h followed by heating at 180 °C for 24 h gave rise to a new inorganic-organic hybrid solid, [C4N2H12][Co4(HPO3)2(C2O4)3], I. The structure consists of edge-shared CoO6 octahedra forming a [Co2O10] dimers that are connected by HPO3 and C2O4 units forming a three-dimensional structure with one-dimensional channels. The amine molecules are positioned within these channels. The oxalate units have a dual role of connecting within the plane of the layer as well as out of the plane. Magnetic susceptibility measurement shows the compound orders antiferromagnetically at low temperature (). Crystal data: I, monoclinic, space group=P21/c (No. 14). a=7.614(15), b=7.514(14), , β=97.351(3)°, , Z=2, , , R1=0.0310 and wR2=0.0807 data [I>2σ(I)].  相似文献   

14.
15.
The first organically templated neodymium sulfate has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction analysis. [C2N2H10]1.5[Nd(SO4)3(H2O)]·2H2O crystallizes in the monoclinic space group P21/c with crystal data , , , β=104.399(5)°, , Z=4. Refinement gave R1[I>2σ(I)]=0.0471, and wR2[I>2σ(I)]=0.0899. The compound exhibits an infinite zigzag anionic layer structure, which consists of {Nd(SO4)3(H2O)}3− structural units connected together to form interesting eight-membered rings via corner-sharing and edge-sharing modes. The compound has the antiferromagnetic behavior and exhibits intense photoluminescence upon photo-excitation at 450 nm.  相似文献   

16.
The bismuth basic nitrate [Bi6O4.5(OH)3.5]2(NO3)11 crystallizes in the monoclinic space group P21 with , , , β=107.329(17)° and . Its structure has been determined from , twinned crystal X-ray data (16 781 reflections, 683 parameters, R=0.0703). It is built upon [Bi6Ox(OH)8−x](10−x)+, x=4 and x=5 hexanuclear complexes and nitrate groups. The polycationic entities are linked to the nitrate anions either by hydrogen bonds or through bismuth-oxygen coordination. Even at , the [Bi6O4(OH)4]6+ and [Bi6O5(OH)3]5+ polycations could not be observed as such, the crystal structure refinement only detecting an average [Bi6O4.5(OH)3.5]5.5+ polycation. To prove the presence of both hexanuclear complexes in the structure, we report the existence of a correlation between the bismuth-linked oxygen bond-valence parameters and the presence, or not, of hydroxyl groups. Moreover, the Raman spectrum of the new anhydrous bismuth basic nitrate is compared to those of [Bi6O5(OH)3](NO3)5·3H2O, [Bi6O4(OH)4](NO3)6·4H2O, and two yet uncharacterized bismuth nitrates.  相似文献   

17.
A cobalt phosphonate (H3O)6·[Co4(H2O)4(HPMIDA)2(PMIDA)2)]·2H2O, 1, has been synthesized from a mild solvothermal reaction of Co(II) ion with N-(phosphonomethyl)iminodiacetic acid (H4PMIDA). Compound 1 crystallizes in the triclinic space group with cell parameters of , , , α=93.06(3)°, β=99.66(3)°, γ=90.34(3)° and Z=1. Compound 1 shows a novel tetra-nuclear molecular structure. In the crystal lattice, molecules of 1 hydrogen bond to each other to form two-dimensional (2D) layers, which are further linked together by the co-crystallized H2O molecules and H3O+ counter ions through hydrogen bonding to form the 3D supramolecular network. Thermogravimetric analysis, IR spectrum, magnetic susceptibility and luminescent spectra are given.  相似文献   

18.
Single crystals of the potassium uranyl iodate, K[UO2(IO3)3] (1), have been grown under mild hydrothermal conditions. The structure of 1 contains two-dimensional sheets extending in the [ab] plane that consist of approximately linear UO22+ cations bound by iodate anions to yield UO7 pentagonal bipyramids. There are three crystallographically unique iodate anions, two of which bridge between uranyl cations to create sheets, and one that is monodentate and protrudes in between the layers in cavities. K+ cations form long ionic contacts with oxygen atoms from the layers forming an eight-coordinate distorted dodecahedral geometry. These cations join the sheets together. Ion-exchange reactions have been carried out that indicate the selective uptake of Cs+ over Na+ or K+ by 1. Crystallographic data (193 K, MoKα, ): 1, orthorhombic, Pbca, a=11.495(1) Å, b=7.2293(7) Å, c=25.394(2) Å, Z=8, R(F)=1.95% for 146 parameters with 2619 reflections with I>2σ(I).  相似文献   

19.
α-Ca3(BN2)2 crystallizes in the cubic system (space group: ) with one type of calcium ions disordered over of equivalent (8c) positions. An ordered low-temperature phase (β-Ca3(BN2)2) was prepared and found to crystallize in the orthorhombic system (space group: Cmca) with lattice parameters: , , and . Structure refinements on the basis of X-ray powder data have revealed that orthorhombic β-Ca3(BN2)2 corresponds to an ordered super-structure of cubic α-Ca3(BN2)2. The space group Cmca assigned for β-Ca3(BN2)2 is derived from by a group-subgroup relationship.DSC measurements and temperature-dependent in situ X-ray powder diffraction studies showed reversible phase transitions between β- and α-Ca3(BN2)2 with transition temperatures between 215 and 240 °C.The structure Sr3(BN2)2 was reported isotypic with α-Ca3(BN2)2 () with one type of strontium ions being disordered over of equivalent (2c) positions. In addition, a primitive () structure has been reported for Sr3(BN2)2. Phase stability studies on Sr3(BN2)2 revealed a phase transition between a primitive and a body-centred lattice around 820 °C. The experiments showed that both previously published structures are correct and can be assigned as α-Sr3(BN2)2 (, high-temperature phase), and β-Sr3(BN2)2 (, low-temperature phase).A comparison of Ca3(BN2)2 and Sr3(BN2)2 phases reveals that the different types of cation disordering present in both of the cubic α-phases () have a directing influence on the formation of two distinct (orthorhombic and cubic) low-temperature phases.  相似文献   

20.
The actual structure of the vanadium phosphate K6(VO)2(V2O3)2(PO4)4(P2O7) has been determined, using a much larger single crystal than previously used for the isostructural Rb-phase. The actual supercell is four times larger than the corresponding orthorhombic subcell with , , , α=β=γ=90°. The structure resolution, performed in the triclinic space group C-1, shows that the P2O7 groups alone are responsible for the superstructure, all the other atoms keeping the atomic positions of the orthorhombic subcell. This structural study shows a perfect ordering of the P2O7 groups in the actual structure, in contrast to the results obtained from the subcell. Concomitantly, the V4+ and V5+ are found to be ordered in the form of [110] stripes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号