首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two crystallographically non-equivalent Co atoms of the quasi-one-dimensional crystal structure of Ca3Co2O6 form chains with alternating, face-sharing polyhedra of Co2O6 trigonal prisms and Co1O6 octahedra. This compound forms a substitutional solid-solution phase with Sc, in which the Sc atoms enter the Co2 sublattice exclusively. The homogeneity range of Ca3Co2−vScvO6 (more specifically Ca3Co1Co21−vScvO6) extends up to v≈0.55. The crystal structure belongs to space group Rc with lattice parameters (in hexagonal setting): 9.0846(3)?a?9.1300(2) Å and 10.3885(4)?c?10.4677(4) Å. The magnetic moment decreases rapidly with increasing amount of the non-magnetic Sc solute in the lattice.  相似文献   

2.
The homogeneity range of the Ca3Co2-vMnvO6 solid-solution phase covers the entire composition interval from v=0 to 1. A systematic powder X-ray and neutron diffraction, magnetic susceptibility, and magnetization study has been carried out to investigate effects of the Mn-for-Co substitution on structural and magnetic properties. The Mn substitution concerns primarily only the octahedral Co1 site of the Ca3Co1Co2O6 crystal structure, whereas the trigonal-prismatic Co2 site structurally is left essentially unaffected. The Ca3Co2-vMnvO6 crystal structure belongs to space group with unit-cell dimensions (in hexagonal setting) 9.084?a?9.134 Å and 10.448?c?10.583 Å. A cut through the magnetic phase diagram at 10 K shows a ferrimagnetic domain for 0?v<∼0.3 and an antiferromagnetic domain for ∼0.50<v<∼1. The magnetic ordering temperatures are quite low (<∼25/18 K), and even so further magnetic transitions appear to take place at still lower temperature. The legitimity and reliability of the different indicators used to establish the magnetic transitions, their individual accuracy, and mutual consistency are briefly discussed. Variable parameters of the crystal and magnetic structures of Ca3Co11-vMnvCo2O6 are determined and their variation with v is briefly discussed in relation to chemical bonding. The magnetic structure in the ferrimagnetic region is essentially the same as that of the pristine v=0 phase, but since the moments at the Co2 site decrease and those at the (Co1,Mn) site increase with increasing v; characteristic traits of ferrimagnetism in magnetic susceptibility and magnetization gradually disappear. The magnetic arrangement in the antiferromagnetic region is characterized by differently sized moments at the (Co1,Mn) and Co2 sites, moments at adjacent sites in each of these sublattices being oppositely oriented along [001].  相似文献   

3.
The new mixed oxide having composition close to Ca7Co3Ga5O18 was synthesized from CaCO3, Co3O4 and Ga2O3 at 1150 °C in air and studied by neutron and synchrotron X-ray powder diffraction, selected-area electron diffraction and high-resolution electron microscopy. The structure was refined, using time-of-flight (TOF) neutron powder diffraction data, in space group F432, with and Z=8, to RF=0.7%. It is considerably disordered, with four different tetrahedral sites randomly occupied by Co and Ga atoms at a ratio of 1:2. The tetrahedra form a disordered (Co1/3Ga2/3)O2 3D-framework inside which isolated CoO6 octahedra, surrounded by 8 Ca atoms, are located. The structure is related to the ordered structure of Ca14Al10Zn6O35. Electron diffraction patterns confirmed the symmetry and unit cell and revealed no diffuse scattering. High-resolution electron microscopy images showed the absence of extended structural defects.  相似文献   

4.
In the Ca-Co-Zn-O system, we have determined the tie-line relationships and the thermoelectric properties, solid solution limits, and structures of two low-dimensional cobaltite series, Ca3(Co, Zn)4O9−z and Ca3(Co,Zn)2O6−z at 885 °C in air. In Ca3(Co,Zn)4O9−z, which has a misfit layered structure, Zn was found to substitute in the Co site to a limit of Ca3(Co3.8Zn0.2)O9−z. The compound Ca3(Co,Zn)2O6−z (n=1 member of the homologous series, Can+2(Co,Zn)n(Co,Zn)′O3n+3−z) consists of one-dimensional parallel (Co,Zn)2O66− chains that are built from successive alternating face-sharing (Co,Zn)O6 trigonal prisms and ‘n’ units of (Co,Zn)O6 octahedra along the hexagonal c-axis. Zn substitutes in the Co site of Ca3Co2O6 to a small amount of approximately Ca3(Co1.95Zn0.05)O6−z. In the ZnO-CoOz system, Zn substitutes in the tetrahedral Co site of Co3O4 to the maximum amount of (Co2.49Zn0.51)O4−z and Co substitutes in the Zn site of ZnO to (Zn0.94Co0.06)O. The crystal structures of (Co2.7Zn0.3)O4−z, (Zn0.94Co0.06)O, and Ca3(Co1.95 Zn0.05)O6−z are described. Despite the Ca3(Co, Zn)2O6−z series having reasonably high Seebeck coefficients and relatively low thermal conductivity, the electrical resistivity values of its members are too high to achieve high figure of merit, ZT.  相似文献   

5.
Single crystals of Ca3CuRhO6, Ca3Co1.34Rh0.66O6 and Ca3FeRhO6 were synthesized by high temperature flux growth in molten K2CO3 and structurally characterized by single crystal X-ray diffraction. While Ca3Co1.34Rh0.66O6 and Ca3FeRhO6 crystallize with trigonal (rhombohedral) symmetry in the space group , Z=6: Ca3Co1.34Rh0.66O6a=9.161(1) Å, c=10.601(2) Å; Ca3FeRhO6a=9.1884(3) Å, c=10.7750(4) Å; Ca3CuRhO6 adopts a monoclinic distortion of the K4CdCl6 structure in the space group C2/c, Z=4: a=9.004(2) Å, b=9.218(2) Å, c=6.453(1) Å, β=91.672(5). All crystals of Ca3CuRhO6 examined were twinned by pseudo-merohedry. Ca3CuRhO6, Ca3Co1.34Rh0.66O6, and Ca3FeRhO6 are structurally related and contain infinite one-dimensional chains of alternating face-sharing RhO6 octahedra and MO6 trigonal prisms. In the monoclinic modification, the copper atoms are displaced from the center of the trigonal prism toward one of the rectangular faces adopting a pseudo-square planar configuration. The magnetic properties of Ca3CuRhO6, Ca3Co1.34Rh0.66O6, and Ca3FeRhO6 are discussed.  相似文献   

6.
Novel complex oxides Ca14Zn6Ga10O35 and Ca14Zn5.5Ga10.5O35.25 were prepared in air at 1200 °C, 72 h. Refinements of their crystal structures using X-ray powder diffraction data showed that Ca14Zn6Ga10O35 is ordered (S.G. F23, =0.0458, Rp=0.0485, Rwp=0.0659, χ2=1.88) and Ca14Zn5.5Ga10.5O35.25 disordered (S.G. F432, =0.0346, Rp=0.0601, Rwp=0.0794, χ2=2.82) variants of the crystal structure of Ca14Zn6Al10O35. In the crystal structure of Ca14Zn6Ga10O35, there are large empty voids, which could be partially occupied by additional oxygen atoms upon substitution of Zn2+ by Ga3+ as in Ca14Zn5.5Ga10.5O35.25. These oxygen atoms are introduced into the crystal structure of Ca14Zn5.5Ga10.5O35.25 only as a part of four tetrahedra (Zn, Ga)O4 groups sharing common vertex. This creates a situation where even a minor change in the chemical composition leads to considerable anion and cation disordering resulting in a change of space group from F23 (no. 196) to F432 (no. 209).  相似文献   

7.
A new Ca6.3Mn3Ga4.4Al1.3O18 compound has been prepared by solid state reaction in a dynamic vacuum of 5×10−6 mbar at 1200 °C. The crystal structure of Ca6.3Mn3Ga4.4Al1.3O18 was studied using X-ray powder diffraction (, SG F432, Z=8, RI=0.031, RP=0.068), electron diffraction and high resolution electron microscopy. The Ca6.3Mn3Ga4.4Al1.3O18 structure can be described as a tetrahedral [(Ga0.59Mn0.24Al0.17)15O30]18.24− framework stabilized with embedded [(Ca0.9Mn0.1)14MnO6]18.24+ polycations, which consists of an isolated MnO6 octahedron surrounded by a capped cube of (Ca0.9Mn0.1) atoms. The Ca6.3Mn3Ga4.4Al1.3O18 structure is related to the structure of Ca7Zn3Al5O17.5, but appears to be significantly disordered due to the presence of two orientations of oxygen tetrahedra around the cationic 0,0,0 and x,x,x () positions in a random way according to the F432 space symmetry. The analogy between the Ca6.3Mn3Ga4.4Al1.3O18 crystal structure and the structure of the “fullerenoid” Sr33Bi24+δAl48O141+3δ/2 oxide is discussed. Ca6.3Mn3Ga4.4Al1.3O18 adopts a Curie-Weiss behavior of χ(T) above with a Weiss temperature and per formula unit. At lower temperatures, the χ(T) deviates from the Curie-Weiss law indicating a strengthening of the ferromagnetic component of the exchange interaction.  相似文献   

8.
The novel compound Ca2Co1.6Ga0.4O5 with brownmillerite (BM) structure has been prepared from citrates at 950 °C. The crystal structure of Ca2Co1.6Ga0.4O5 was refined, from neutron powder diffraction (NPD) data, in space group Pnma, , , , χ2=1.798, , Rwp=0.0378 and Rp=0.0292. On the basis of the NPD refinement the compound was found to be a G-type antiferromagnet (space group Pnma) at room temperature, with the magnetic moments of cobalt atoms directed along chains of tetrahedra in the BM structure. Electron diffraction and electron microscopy studies revealed disorder in the crystallites, which can be interpreted as the presence of slabs with BM-type structure of Pnma and I2mb symmetry.  相似文献   

9.
Oxides in the system PrCo1−xMgxO3 (x=0.0, 0.05, 0.10, 0.15, 0.20, 0.25) were synthesized by citrate technique and characterized by powder X-ray diffraction and scanning electron microscope. All compounds have a cubic perovskite structure (space group ). The maximum ratio of doped Mg in the system PrCo1−xMgxO3 is x=0.2. Further doping leads to the segregation of Pr6O11 in PrCo1−xMgxO3. The substitution of Mg for Co improves the performance of PrCoO3 as compared to the electrical conductivity measured by a four-probe electrical conductivity analyzer in the temperature range from 298 to 1073 K. The substitution of Mg for Co on the B site may be compensated by the formations of Co4+ and oxygen vacancies. The electrical conductivity of PrCo1−xMgxO3 oxides increases with increasing x in the range of 0.0-0.2. The increase in conductivity becomes considerable at the temperatures ?673 K especially for x?0.1; it reaches a maximum at x=0.2 and 1073 K. From x>0.2 the conductivity of PrCo1−xMgxO3 starts getting lower. This is probably a result of the segregation of Pr6O11 in PrCo1−xMgxO3 , which blocks oxygen transport, and association of oxygen vacancies. A change in activation energy for all PrCo1−xMgxO3 compounds (x=0-0.25) was observed, with a higher activation energy above 573 K and a lower activation energy below 573 K. The reasons for such a change are probably due to the change of dominant charge carriers from Co4+ to Vö in PrCo1−xMgxO3 oxides and a phase transition mainly starting at 573 K.  相似文献   

10.
La-doped Sr2CoWO6 double perovskites have been prepared in air in polycrystalline form by solid-state reaction. These materials have been studied by X-ray powder diffraction (XRPD), neutron powder diffraction (NPD) and magnetic susceptibility. The structural refinement was performed from combined XRPD and NPD data (D2B instrument, λ=1.594 Å). At room temperature, the replacement of Sr2+ by La3+ induces a change of the tetragonal structure, space group I4/m of the undoped Sr2CoWO6 into the distorted monoclinic crystal structure, space group P21/n, Z=2. The structure of La-doped phases contains alternating CoO6 and (Co/W)O6 octahedra, almost fully ordered. On the other hand, the replacement of Sr2+ by La3+ induces a partial replacement of W6+ by Co2+ into the B sites, i.e. Sr2−xLaxCoW1−yCoyO6 (y=x/4) with segregation of SrWO4. Magnetic and neutron diffraction measurements indicate an antiferromagnetic ordering below TN=24 K independently of the La-substitution.  相似文献   

11.
Single crystals of the LiCoO2-LiAlO2 solid solution compounds LiAl0.32Co0.68O2 and LiAl0.71Co0.29O2 were synthesized by a flux method using alumina crucibles. A single-crystal X-ray diffraction study confirmed the trigonal space group and the lattice parameters a=2.8056(11) Å, c=14.1079(15) Å, and c/a=5.028 for LiAl0.32Co0.68O2, and a=2.8023(7) Å, c=14.184(4) Å, and c/a=5.061 for LiAl0.71Co0.29O2. The crystal structures have been refined to the conventional values R=3.2% and wR=2.4% for LiAl0.32Co0.68O2, and R=3.6% and wR=3.5% for LiAl0.71Co0.29O2. The evidence of the location of Al atoms in the pseudotetragonal coordination (6c site), reported previously in LiAl0.2Co0.8O2, could not be observed in the present electron density distribution maps in both LiAl0.32Co0.68O2 and LiAl0.71Co0.29O2. The octahedral distortion analysis indicated that the Al-substitution strongly affected the distortion of the LiO6 octahedron in this solid-solution compound system, but hardly affected that of the (Al.Co)O6 octahedron.  相似文献   

12.
The basic mercury(I) chromate(VI), Hg6Cr2O9 (=2Hg2CrO4·Hg2O), has been obtained under hydrothermal conditions (200 °C, 5 days) in the form of orange needles as a by-product from reacting elemental mercury and K2Cr2O7. Hydrothermal treatment of microcrystalline Hg6Cr2O9 in demineralised water at 200 °C for 3 days led to crystal growth of red crystals of the basic mercury(I, II) chromate(VI), Hg6Cr2O10 (=2Hg2CrO4·2HgO). The crystal structures were solved and refined from single crystal X-ray data sets. Hg6Cr2O9: space group P212121, Z=4, a=7.3573(12), b=8.0336(13), , 3492 structure factors, 109 parameters, R[F2>2σ(F2)]=0.0371, wR(F2 all)=0.0517; Hg6Cr2O10: space group Pca21, Z=4, a=11.4745(15), b=9.4359(12), , 3249 structure factors, 114 parameters, R[F2>2σ(F2)]=0.0398, wR(F2 all)=0.0625. Both crystal structures are made up of an intricate mercury-oxygen network, subdivided into single building blocks [O-Hg-Hg-O] for the mercurous compound, and [O-Hg-Hg-O] and [O-Hg-O] for the mixed-valent compound. Hg6Cr2O9 contains three different Hg22+ dumbbells, whereas Hg6Cr2O10 contains two different Hg22+ dumbbells and two Hg2+ cations. The HgI-HgI distances are characteristic and range between 2.5031(15) and 2.5286(9) Å. All Hg22+ groups exhibit an unsymmetrical oxygen environment. The oxygen coordination of the Hg2+ cations is nearly linear with two tightly bonded O atoms at distances around 2.07 Å. For both structures, the chromate(VI) anions reside in the vacancies of the Hg-O network and deviate only slightly from the ideal tetrahedral geometry with average Cr-O distances of ca. 1.66 Å. Upon heating at temperatures above 385 °C, Hg6Cr2O9 decomposes in a four-step mechanism with Cr2O3 as the end-product at temperatures above 620 °C.  相似文献   

13.
Sr3In0.9Co1.1O6, isostructural to Ca3Co2O6, is revealed by the study of the phase relations in the system SrO-InO1.5-CoOx (1000 °C). The structure of Sr3In0.9Co1.1O6 is refined by the combination of powder X-ray and neutron diffraction. Sr3In0.9Co1.1O6 crystallizes in a trigonal lattice with the cell parameters a=b=9.59438(3) Å, c=11.02172(4) Å with the space group R-3c. Its structure possesses 1D (In/Co)O3 chains running along the c-axis constructed by alternating face-sharing CoO6 octahedra and (In0.9Co0.1)O6 trigonal prisms. The co-occupation of In3+ and Co3+ at the trigonal prismatic site is evidenced by elementary analysis and determined by the structure refinement. Sr3In0.9Co1.1O6 is paramagnetic, and the susceptibility is consistent with the occupation of Co3+ at 10% of the trigonal prismatic positions in a high spin state (HS, S=2). The HS Co3+ is well separated by diamagnetic CoO6 octahedra and InO6 trigonal prisms and shows a g factor of 2.0 in the magnetic measurements.  相似文献   

14.
The accommodation of Co in the oxygen-saturated solid-solution phase YBa2(Fe1−zCoz)3O8+w has been investigated by powder X-ray and neutron diffraction techniques, as well as by Mössbauer spectroscopy. Of the nominal composition range 0.00?z?1.00 tested, the solid-solution limit under syntheses at 950°C in is z=0.47(5). No symmetry change in the nuclear and magnetic structures is seen as a consequence of the Co substitution, and the Co atoms are distributed evenly over the two sites that are square-pyramidally and octahedrally coordinated for w=0. The oxygen-saturated samples maintain their oxygen content roughly constant throughout the homogeneity range, showing that Co3+ replaces Fe3+. Despite the nearly constant value of w, Mössbauer spectroscopy shows that the amount of tetravalent Fe slightly increases with increasing z, and this allows Co to adopt valence close to 3.00 to a good approximation. The magnitude of the antiferromagnetic moment (located in the a,b plane) decreases with z in accordance with the high-spin states of the majority Fe3+ and Co3+ ions. Bond-valence analyses are performed to illustrate how the structural network becomes increasingly frustrated as a result of the substitution of Fe3+ by the smaller Co3+ ion. A contrast is pointed out with the substitution of cobalt in YBa2Cu3O7 where it is a larger Co2+ ion that replaces smaller Cu2+.  相似文献   

15.
Zn7Sb2O12 forms a full range of Co-containing α solid solutions, Zn7−xCoxSb2O12, with an inverse-spinel structure at high temperature. At low temperatures for x<2, the solid solutions transform into the low temperature β-polymorph. For x=0, the βα transition occurs at 1225±25 °C; the transition temperature decreases with increasing x. At high x and low temperatures, α solid solutions are formed but are non-stoichiometric; the (Zn+Co):Sb ratio is >7:2 and the compensation for the deficiency in Sb is attributed to the partial oxidation of Co2+ to Co3+. From Rietveld refinements using ND data, Co occupies both octahedral and tetrahedral sites at intermediate values of x, but an octahedral preference attributed to crystal field stabilisation, causes the lattice parameter plot to deviate negatively from the Vegard's law. Sub-solidus compatibility relations in the ternary system ZnO-Sb2O5-CoO have been determined at 1100 °C for the compositions containing ?50% Sb2O5.  相似文献   

16.
The compound Ca14MnP11 crystallizes in the Ca14AlSb11 structure type with the tetragonal space group I41/acd (Z=8) and lattice parameters of , c=20.7565(9) at 90 K. The structure consists of MnP49− tetrahedron, P37− trimer, 4 P3− isolated anions and 14 Ca2+ cations. Similar to other compounds of this structure type containing phosphorous, the P37− trimer has a central P atom that is best modeled in the structure as being equally split between two sites. In addition, there is no additional distortion of the manganese-containing tetrahedron compared with the main group analog, Ca14GaP11, suggesting that the Mn oxidation state is Mn2+. Temperature-dependent magnetic susceptibility shows that the compound is paramagnetic over the entire temperature range measured (2-300 K). The data can be fit with a modified Curie-Weiss law and provide an effective magnetic moment of 5.80 (2) B.M. with a Weiss constant of −2.13(2) K and . This moment is significantly higher than those measured for any of the Mn-containing analogs and is consistent with Mn2+. This result will be discussed in light of the electron counting scheme for Mn compounds of the Ca14AlSb11 structure-type.  相似文献   

17.
The layered LiNi1/3Co1/3Mn1/3O2−zFz (0 ≤ z ≤ 0.12) cathode materials were synthesized from oxalate precursors by a simple self-propagating solid-state metathesis method with the help of the ball milling and the following calcination. Li(Ac)·2H2O, Ni(Ac)2·4H2O, Co(Ac)2·4H2O, Mn(Ac)2·4H2O(Ac = acetate), LiF and excess H2C2O4·2H2O were used as starting materials without any solvent. The structural and electrochemical properties of the prepared LiNi1/3Co1/3Mn1/3O2−zFz were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and electrochemical measurements, respectively. The XRD patterns indicate that all samples have a typical hexagonal structure with a space group of . The FESEM images show that the primary particle size of LiNi1/3Co1/3Mn1/3O2−zFz gradually increases with increasing fluorine content. Though the fluorine-substituted LiNi1/3Co1/3Mn1/3O2−zFz have lower initial discharge capacities, a small amount of fluorine-substituted LiNi1/3Co1/3Mn1/3O2−zFz (z = 0.04 and 0.08) exhibit excellent cycling stability and rate capability compared to fluorine-free LiNi1/3Co1/3Mn1/3O2.  相似文献   

18.
We report the synthesis and crystal structure of the new compound Sr4PbPt4O11, containing platinum in highly unusual square pyramidal coordination. The crystals were obtained in molten lead oxide. The structure was solved by X-ray single crystal diffraction techniques on a twinned sample, the final R factors are R=0.0260 and wR=0.0262. The symmetry is triclinic, space group P1¯, with , , , α=90.421(3)°, β=89.773(8)°, γ=90.140(9)° and Z=2. The structure is built from dumbell-shaped Pt2O9 entities formed by a dinuclear metal-metal bonded Pt26+ ion with asymmetric environments of the two Pt atoms, classical PtO4 square plane and unusual PtO5 square pyramid. Successive Pt2O9 entities deduced from 90° rotations are connected through the oxygens of the PtO4 basal squares to form [Pt4O108−] columns further connected through Pb2+ and Sr2+ ions. Raman spectroscopy confirmed the peculiar platinum coordination environment.  相似文献   

19.
Powder samples of the Cr6+-containing compound Bi6Cr2O15 were prepared by solid state reaction of Bi2O3 and Cr2O3 in air at 650°C. The structure was solved and refined using high-resolution neutron powder diffraction data in space group Ccc2, with anisotropic thermal displacement parameters a=12.30184(5), b=19.87492(7), and c=5.88162(2) Å, V=1438.0 Å3, and 126 variables to RF=1.8%. Bi6Cr2O15 exhibits a new structure type that contains (Bi12O14)8n+n columns, of the kind previously found only for phases isotypic with Bi13Mo4VO34. Each column is surrounded by eight CrO2−4 tetrahedra. The ionic conductivity of Bi6Cr2O15 was determined by impedance measurements to be 3.5×10−5 (Ω cm)−1 at 600°C.  相似文献   

20.
A series of spinel-type CoxNi1−xFe2O4 (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) magnetic nanomaterials were solvothermally synthesized as enzyme mimics for the eletroctrocatalytic oxidation of H2O2. X-ray diffraction and scanning electron microscope were employed to characterize the composition, structure and morphology of the material. The electrochemical properties of spinel-type CoxNi1−xFe2O4 with different (Co/Ni) molar ratio toward H2O2 oxidation were investigated, and the results demonstrated that Co0.5Ni0.5Fe2O4 modified carbon paste electrode (Co0.5Ni0.5Fe2O4/CPE) possessed the best electrocatalytic activity for H2O2 oxidation. Under optimum conditions, the calibration curve for H2O2 determination on Co0.5Ni0.5Fe2O4/CPE was linear in a wide range of 1.0 × 10−8–1.0 × 10−3 M with low detection limit of 3.0 × 10−9 M (S/N = 3). The proposed Co0.5Ni0.5Fe2O4/CPE was also applied to the determination of H2O2 in commercial toothpastes with satisfactory results, indicating that CoxNi1−xFe2O4 is a promising hydrogen peroxidase mimics for the detection of H2O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号