首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microstructural evolution due to equal-channel angular-pressing (ECAP) with increasingly severe deformation was investigated in a commercially pure 1200 aluminum alloy. A true strain of eight produced sub-micrometer scale grains and very fine subgrains in the grain interior. The deformation process was documented and described using field-emission (FEG) gun scanning and transmission electron microscopy techniques. After eight ECAP passes, the high-angle grain boundaries accounted for approximately 70% of all boundaries. The fine spacing resolution of FEG scanning electron microscopy allowed detailed grain and subgrain statistical evaluation in the deformed microstructure; transmission electron microscopic inspection afforded appreciation of the role of very low-angle misorientation boundaries in the microstructure-refining process. ECAP results were compared with those produced by cold rolling. The material's texture evolved in a decreasing trend of Cube {001}100 intensities in favor of Cube rotated toward the normal-to-pressing direction {001}120, while Goss {110}001 and {111}110, {111}112 directions slightly increased with strain.  相似文献   

2.
The effects of annealing prior to cold rolling on the microstructure, magnetic and mechanical properties of low-C grain non-oriented (GNO) electrical steels have been investigated. The grain structure of hot-rolled electrical steel strips is modified by annealing at temperatures between 700 and 1050 °C. Annealing at temperatures less than the ferrite to austenite+ferrite transformation temperature on heating (Ac1) causes a marginal effect on the grain size. However, annealing in the intercritical region at temperatures between Ac1 and Ac3 (the ferrite+austenite to austenite transformation temperature on heating) causes rapid decarburization and development of large columnar ferrite grains free of carbide particles. This microstructure leads, after cold rolling and a fast annealing treatment, to carbide free, large ferrite grain microstructures with magnetic and mechanical properties superior to those observed typically in the same steel in the industrially fully processed condition. These results are attributed to the increment in grain size and to the {1 0 0} fiber texture developed during the final annealing at temperatures up to 850 °C. Annealing at higher temperatures, T>Ac3, results in a strong {1 1 1} fiber texture and an increase of the quantity of second phase particles present in the microstructure, which lead to a negative effect on the final properties. The results suggest that annealing prior to cold rolling offers an attractive alternative processing route for the manufacture of fully processed low C GNO electrical steels strips.  相似文献   

3.
The crystallographic texture of metallic materials has a very strong effect on the properties of the materials. In the present article, we look at the rolling textures of fcc metals and alloys, where the classical problem is the existence of two different types of texture, the “copper-type texture” and the “brass-type texture.” The type of texture developed is determined by the stacking fault energy of the material, the rolling temperature and the strain rate of the rolling process. Recent texture simulations by the present authors provide the basis for a renewed discussion of the whole field of fcc rolling texture. We simulate the texture development with a model which allows us to vary the strength of the interaction between the grains and to vary the scheme for the calculation of the lattice rotation in the individual grains (type CL/MA or PR/PSA). For the deformation pattern we focus on {111}<110> slip without or with deformation twinning, but we also consider slip on other slip planes and slip by partial dislocations. We consistently make quantitative comparison of the simulation results and the experimental textures by means of a scalar correlation factor. We find that the development of the copper-type texture is best simulated with {111}<110> slip combined with type CL/PR lattice rotation and relatively strong interaction between the grains — but not with the full-constraint Taylor model and neither with the classical relaxed-constraint models. The development of the brass-type texture is best simulated with {111}<110> slip combined with PR/PSA lattice rotation and weak interaction between the grains. The possible volume effect of deformation twins on the formation of the brass-type texture is a controversial question which we discuss on the basis of our simulations as seen together with other investigations.  相似文献   

4.
We consider the crack propagation in a soft steel sheet during the formation. The drawability is considered in relation with the structural anisotropy, the mechanical behaviour is related to both the grain morphology and the texture. The structure heterogeneity could lead to the apparition of micro-cracks. The results show the texture effect on the crack propagation and on the crack arrest in soft steel during the formation. The EBSD technique allows to show that the adjustment of the grain orientation from the initial main component {111}(112) towards the deformation orientation {111}(110) incites a trans-granular crack through a grain with initial {111}(112) orientation in a globally ductile material. It is the presence of grains with {111}(110) orientation which permits the closing of micro-cracks.  相似文献   

5.
R. Kalsar  R. Madhavan  R. K. Ray 《哲学杂志》2020,100(16):2143-2164
ABSTRACT

The evolution of deformation texture and microstructure in commercially pure Al (cp-Al) and two Al–Mg alloys (Al–4Mg and Al–6Mg) during cold rolling to a very large strain (true strain εt? ≈?3.9) was investigated. The development of deformation texture in cp-Al, after rolling, can be considered as pure metal or Copper-type, which is characterised mainly by the presence of Cu {112}<111>, Bs {110}<112> and S {123}<634> components. The deformation microstructure clearly indicates that deformation mechanism in this case remains slip dominated throughout the deformation range. In the Al–4Mg alloy, the initial slip mode of deformation is finally taken over by mechanism involving both slip and Copper-type shear bands, at higher deformation levels. In contrast, in the Al–6Mg alloy, the slip and twin mode of deformation in the initial stage is replaced by slip and Brass-type shear bands at higher deformation levels. Although a Copper-type deformation texture forms in the two Al–Mg alloys at the initial stage of deformation, there is a significant increase in the intensity of the Bs component and a noticeable decrease in the intensity of the Cu component at higher levels of deformation, particularly in the Al–6Mg alloy. This phenomenon indicates the possibility of transition of the deformation texture from Cu-type to Bs-type, which is concurrent with the addition of Mg. Using visco-plastic self-consistent modelling, the evolution of deformation texture could be simulated for all three materials.  相似文献   

6.
A variant of the crystallographic theory of martensitic transformations is proposed, based on a mechanism of lattice deformation in which the angle of rotation of a martensite plate is reduced to a minimum. In an iron-nickel alloy with twinned martensite, the least angle of rotation corresponds to the deformation of the austenite lattice by shear on the (111) plane in the $\left[ {11\bar 2} \right]$ direction proposed by Kurdyumov and Sachs as the first shear in the two-shear theory of martensite formation in steel.  相似文献   

7.
8.
ABSTRACT

A low carbon high Mn, Ti microalloyed dual phase TWIP steel has been processed through cold rolling and annealing. X-ray diffraction reveals the maximum austenite (≈92%) in HRACST sample whereas, the 50CD sample shows 29% ferrite. The microstructure of HRAC and HRACST samples reveal austenite grains with annealing twins and deformation induced ferrite (DIF). The higher amount of DIF along with deformation twins form during cold deformation. Annealing at 500°C shows recovery, whereas at 700°C shows partial recrystallisation and at 900°C reveals almost full recrystallisation. TEM microstructures of the 900°C for 30?min samples reveal annealing twins with TiC particle. Strong Brass {110}<112> and Goss{110}<001> texture components are observed in HRAC, HRACST and 50CD samples. Goss Twin (GT) {113}<332> and Copper Twin (Cu-T) {552}<115> components are observed in 50CD sample. Addition of Ti results in an average grain size of 20?μm. Maximum YS (1176?MPa) and UTS (1283?MPa) values with the lowest ductility of 11% have been obtained for the 50CD sample which is related to the formation of extensive deformation twin and a higher fraction of DIF. 700°C-30?min and 700°C-60?min samples show an increase in ductility (23% and 34%, respectively) with a marginal decrease in tensile strength (1054?MPa). Annealing at 900°C shows ductility restoration up to 60% with higher tensile strength compared to HRACST sample. Ductile fracture of HRAC and HRACST samples transform to brittle fracture in the 50CD sample. Annealing at 900°C for 30?min shows ductile fracture with some (Fe, Mn)S and TiC particles.  相似文献   

9.
The effect of gallium alloying on the structure, the phase composition, and the properties of quasibinary Ni50Mn50–zGaz (0 ? z ? 25 at %) alloys is studied over a wide temperature range. The influence of the alloy composition on the type of crystal structure in high-temperature austenite and martensite and the critical martensitic transformation temperatures is analyzed. A general phase diagram of the magnetic and structural transformations in the alloys is plotted. The temperature–concentration boundaries of the B2 and L21 superstructures in the austenite field, the tetragonal L10 (2M) martensite, and the 10M and 14M martensite phases with complex multilayer crystal lattices are found. The predominant morphology of martensite is shown to be determined by the hierarchy of the packets of thin coherent lamellae of nano- and submicrocrystalline crystals with planar habit plane boundaries close to {011}B2. Martensite crystals are twinned along one of the 24 \(24\left\{ {011} \right\}{\left\langle {01\bar 1} \right\rangle _{B2}}\) “soft” twinning shear systems, which provides coherent accommodation of the martensitic transformation–induced elastic stresses.  相似文献   

10.
Abstract

In the present work, evolution of microstructure and crystallographic texture during cold rolling of two phase Fe–Cr–Ni alloy was investigated. Fe–Cr–Ni alloy (in initially solution annealed condition) was uni-directionally cold rolled in a laboratory rolling mill to different thickness reductions. Scanning electron microscopy was used to observe the changes in microstructure, while X-ray diffraction was used to investigate changes in crystallographic texture of austenite and ferrite (through changes in orientation distribution function). Crystallographic texture was also simulated using different crystal plasticity models (Full constraint Taylor, relaxed constraint Taylor (lath and pancake) and co-deformation Visco Plastic Self Consistent (VPSC)). With the increase in plastic deformation, there were morphological as well as crystallographic changes in the microstructure. Strong α-fibre (RD//〈1?1?0〉) texture was developed in ferrite, while brass ({1?1?0}〈1?1?2〉) and Goss ({1?1?0}〈0?0?1〉) was dominant in austenite after 80% cold rolling. The formation of brass type texture after deformation has been attributed to the formation of shear bands and presence of strong crystallographic texture in the initial solution annealed material. Both Taylor as well as VPSC models could not capture the changes in texture with deformation accurately. For ferrite: γ-fibre (ND//〈1?1?1〉) and for austenite: Cu ({1?1?2}〈1?1?1〉) component was always present in the simulated textures. Possible reason for this could be the pining effect of interface boundaries and non-incorporation of non-crystallographic shear banding in the Taylor and VPSC models.  相似文献   

11.
The evolution of texture and microstructure during recrystallization is studied for two-phase copper alloy (Cu–40Zn) with a variation of the initial texture and microstructure (hot rolled and solution treated) as well as the mode of rolling (deformation path: uni-directional rolling and cross rolling). The results of bulk texture have been supported by micro-texture and microstructure studies carried out using electron back scatter diffraction (EBSD). The initial microstructural condition as well as the mode of rolling has been found to alter the recrystallization texture and microstructure. The uni-directionally rolled samples showed a strong Goss and BR {236}?385? component while a weaker texture similar to that of rolling evolved for the cross-rolled samples in the α phase on recrystallization. The recrystallization texture of the β phase was similar to that of the rolling texture with discontinuous ?101? α and {111} γ fiber with high intensity at {111}?101?. For a given microstructure, the cross-rolled samples showed a higher fraction of coincident site lattice Σ3 twin boundaries in the α phase. The higher fraction of Σ3 boundaries is explained on the basis of the higher propensity of growth accidents during annealing of the cross-rolled samples. The present investigation demonstrates that change in strain path, as introduced during cross-rolling, could be a viable tool for grain boundary engineering of low SFE fcc materials.  相似文献   

12.
Q. Z. Chen  B. J. Duggan 《哲学杂志》2013,93(23):3633-3646
The mechanisms of shear band formation in IF steel after cold rolling to ~50% reductions have been investigated using transmission electron microscopy. The observations revealed that shear bands were always parallel to a second set of microbands, where these exist, and contained within individual crystals, indicating that shear banding is controlled by orientation. Crystallographic analysis revealed that shear banding involves two mechanisms, dislocation glide and rigid-body rotation. In the first step, dislocation glide causes a rotation about the 〈211〉 axis to produce the so called ‘S’ band, which gives the shear band its crystallographic character. In the second step, when the most heavily stressed slip plane parallel to the shear band is of the form {110}〈111〉, rigid-body rotation continues about the 〈211〉 axis in the sheared zone and, then, a rotation about the transverse direction (TD) is promoted by the geometry of the sample. Using rigid-body matrix theory, the calculated orientations of shear bands are shown to be in agreement with experimental observations. The process outlined is capable of explaining how slip processes in grains that contain microbands, using either {110} or {112} slip planes, can produce crystallographic shear bands.  相似文献   

13.
The structure of strips produced from the Cu–1 wt % Y binary alloy using cold deformation by rolling to the degree of deformation of ~99%, followed by recrystallization annealing, as well as the process of texture formation in these strips, is studied. The possibility of forming a perfect cubic texture in a thin strip made of a binary yttrium-modified copper-based alloy has been shown in principle, which opens the prospect of the use of this alloy to produce substrates for strip high-temperature superconductors of the second generation. The optimum conditions of annealing have been determined, which make it possible to form a perfect biaxial texture in the Cu–1 wt % Y alloy with a content of cubic grains {001}〈100〉 ± 10° on the surface of the textured strip of over 95%.  相似文献   

14.
国产纯铁的轧制与再结晶织构   总被引:1,自引:0,他引:1       下载免费PDF全文
用极固与金相研究工业纯铁的轧制与再结晶织构和组织。热轧后的试样经过两种冷轧方法:(1)压下率为98.8%,与(2)压下率为64.5%,中间700℃熟炼;二次冷轧和压下率63.5%。试样在氢气中分别于(a)650°和(b)1000℃熟炼。第一类材料的轧制织构经测定为(100)[011]+(112)[110]+(111)[112].试样在a与γ区域熟炼后的主要取向为(100)[011]和(111)[112]。第二类材料的轧制织构与第一类相似,惟偏离角度较大。表面与内部织构不同。第二类材料熟炼后的再结晶织构基本上相似,金相组织显出第二次再结晶现象。  相似文献   

15.
Abstract

The grain refinement and texture evolution in the surface gradient microstructure of a Ni-based superalloy induced by high speed machining was studied in this research. The direct evidence of grain refinement induced by dislocation–twin interaction was revealed and the detailed grain refinement process was summarised as deformation twinning, dislocation-twin reaction, localied thinning of nanotwin lamellae and final fracture. The underlying dislocation–twin interaction mechanism was elucidated from the crystallographic perspective. Using electron backscatter diffraction and precession electron diffraction techniques, a multiscale texture analysis covering undeformed coarse grain region, ultrafine grain region and nanograin region was carried out. The texture evolution with decreasing depth to the machined surface was identified as cube in the bulk interior and a mixture of rotated cube {0?0?1}<1?1?0>, cube {1?0?0}<0?0?1>, copper {1?1?2}<1?1?1 > and Goss {1?1?0}<0?0?1> textures in the topmost 1.3-μm-thick nanograin layer. The intrinsic thermomechanical effects of high precision machining are responsible for crystallographic texture transformation.  相似文献   

16.
An Fe-3 wt%Si strip with columnar structure and pronounced {0 0 1}〈0 v w〉 texture was produced using a twin-roll strip caster. Then the as-cast strip was cold-rolled and annealed. The microstructure and texture evolution along the processing steps was investigated. It is found that inhomogeneous microstructure is produced in both cold-rolled and final annealed samples due to the large initial grains. The cold rolling texture is dominated by pronounced a-fiber texture and relatively strong γ-fiber texture. The final recrystallization texture is characterized by {0 0 1}〈0 1 0〉, {0 0 1}〈2 1 0〉, {1 1 0}〈0 0 1〉 texture and a slightly shifted {1 1 1}〈1 1 2〉 component. The microstructural inhomogeneity plays an important role in the texture evolution.  相似文献   

17.
Extended regions located at an angle of 20° to the rolling plane are observed inside deformation bands in a (110)[001] Fe-3%Si alloy single crystal at a high strain (~60%). These regions were interpreted earlier as shear bands. The lattice orientation in these bands is close to (110)[001], and their habit plane is parallel to the {112} planes of the deformed {111}〈112〉 matrix. The misorientations between the bands and the matrix group around special misorientations Σ9, Σ19a, Σ27a, and Σ33a, which are characterized by close angles of rotation about axis 〈110〉. During primary recrystallization, the (110)[001] grains growing from the bands retain segments of the corresponding special boundaries with the deformed matrix.  相似文献   

18.
Abstract

The effect of thermomechanical processing on microstructure evolution and room temperature flow behaviour of polycrystalline magnesium in compression at strain rates of ~10?2 and ~103 s?1 was investigated. Different initial microstructures were produced by optimising rolling and annealing cycles. Prior to annealing for 1 h at 350 °C, Mg samples were processed by two different treatments such as (i) hot rolling at 350 °C and (ii) hot rolling at 350 °C plus cold rolling at room temperature. Introduction of cold working step led to an increased fraction of hard oriented grains with a marginal grain size difference in post-annealed samples. A profound effect of thermomechanical processing on strain hardening rate as well as rate-sensitive flow behaviour of Mg was observed. The influence of prior processing history and strain rate on flow behaviour of Mg was clearly reflected in terms of texture strengthening/weakening phenomena and formation of microstructural deformation bands.  相似文献   

19.
Dependence of the energy of {111} and {100} boundaries on tilt angle θ is investigated by the molecular dynamics method using intermetallic Ni3Al as an example. It is shown that the energy (per single grain dislocation) of grain boundaries in the {111} planes is higher than that of the grains located in the {100} planes. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 33–35, November, 2007.  相似文献   

20.
采用X射线衍射技术、电子背散射衍射技术和扫描电镜分别观察了不同甲烷浓度条件下沉积的CVD自支撑金刚石薄膜的宏观织构、晶界分布和表面形貌. 研究了一阶孪晶在金刚石晶体{111}面生长的原子堆垛过程. 结果表明,由于一阶孪晶〈111〉60°的取向差关系以及{111}面的原子堆垛结构,使{111}面上容易借助碳原子的偏转沉积产生一阶孪晶. 低甲烷浓度时,碳原子倾向于在表面能较低的{111}面沉积,为孪晶的形成提供了便利,且高频率孪晶使薄膜织构强度减弱. 甲烷浓度升高使生长激活能较小的{001}面成为主要前沿生长面,因而只有〈001〉晶向平行薄膜法向的晶粒能够不断长大,因此孪晶形核概率明显减小. 另外,在薄膜中发现二阶孪晶,并对二阶孪晶的形成进行了分析. 关键词: 金刚石薄膜 孪晶 原子机理 取向差  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号