首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A three-step growth process is developed for depositing high-quality aluminium-nitride (AlN) epilayers on (001) sapphire by low pressure metalorganic chemical vapour deposition (LP-MOCVD). We adopt a low temperature (LT) A1N nucleation layer (NL), and two high temperature (HT) A1N layers with different V/Ⅲ ratios. Our results reveal that the optimal NL temperature is 840-880℃, and there exists a proper growth switching from low to high V/Ⅲ ratio for further reducing threading dislocations (TDs). The screw-type TD density of the optimized AIN film is just 7.86×10^6 cm^-2, about three orders lower than its edge-type one of 2×10^9 cm^-2 estimated by high-resolution x-ray diffraction (HRXRD) and cross-sectional transmission electron microscopy (TEM).  相似文献   

2.
AlN with different thicknesses were grown as interlayers (ILs) between GaN and p-type Al0.15Ga0.85N/GaN superlattices (SLs) by metal organic vapor phase epitaxy (MOVPE). It was found that the edge-type threading dislocation density (TDD) increased gradually from the minimum of 2.5×109?cm?2 without AlN IL to the maximum of 1×1010?cm?2 at an AlN thickness of 20 nm, while the screw-type TDD remained almost unchanged due to the interface-related TD suppression and regeneration mechanism. We obtained that the edge-type dislocations acted as acceptors in p-type Al x Ga1?x N/GaN SLs, through the comparison of the edge-type TDD and hole concentration with different thicknesses of AlN IL. The Mg activation energy was significantly decreased from 153 to 70?meV with a?10-nm AlN IL, which was attributed to the strain modulation between AlGaN barrier and GaN well. The large activation efficiency, together with the TDs, led to the enhanced hole concentration. The variation trend of Hall mobility was also observed, which originated from the scattering at TDs.  相似文献   

3.
In this paper, metamorphic growth of GaAs on (001) oriented Si substrate, with a combination method of applying dislocation filter layer (DFL) and three-step growth process, was conducted by metal organic chemical vapor deposition. The effectiveness of the multiple InAs/GaAs self-organized quantum dot (QD) layers acting as a dislocation filter was researched in detail. And the growth conditions of the InAs QDs were optimized by theoretical calculations and experiments. A 2-μm-thick buffer layer was grown on the Si substrate with the three-step growth method according to the optimized growth conditions. Then, a 114-nm-thick DFL and a 1-μm-thick GaAs epilayer were grown. The results we obtained demonstrated that the DFL can effectively bend dislocation direction via the strain field around the QDs. The optimal structure of the DFL is composed of three-layer InAs QDs with a growth time of 55 s. The method could reduce the etch pit density from about 3 × 106 cm?2 to 9 × 105 cm?2 and improve the crystalline quality of the GaAs epilayers on Si.  相似文献   

4.
薛军帅  郝跃  张进成  倪金玉 《中国物理 B》2010,19(5):57203-057203
Comparative study of high and low temperature AlN interlayers and their roles in the properties of GaN epilayers prepared by means of metal organic chemical vapour deposition on (0001) plane sapphire substrates is carried out by high resolution x-ray diffraction, photoluminescence and Raman spectroscopy. It is found that the crystalline quality of GaN epilayers is improved significantly by using the high temperature AlN interlayers, which prevent the threading dislocations from extending, especially for the edge type dislocation. The analysis results based on photoluminescence and Raman measurements demonstrate that there exist more compressive stress in GaN epilayers with high temperature AlN interlayers. The band edge emission energy increases from 3.423~eV to 3.438~eV and the frequency of Raman shift of $E_{2 }$(TO) moves from 571.3~cm$^{ - 1}$ to 572.9~cm$^{ - 1}$ when the temperature of AlN interlayers increases from 700~$^{\circ}$C to 1050~$^{\circ}$C. It is believed that the temperature of AlN interlayers effectively determines the size, the density and the coalescence rate of the islands, and the high temperature AlN interlayers provide large size and low density islands for GaN epilayer growth and the threading dislocations are bent and interactive easily. Due to the threading dislocation reduction in GaN epilayers with high temperature AlN interlayers, the approaches of strain relaxation reduce drastically, and thus the compressive stress in GaN epilayers with high temperature AlN interlayers is high compared with that in GaN epilayers with low temperature AlN interlayers.  相似文献   

5.
This paper reports that the GaN thin films with Ga-polarity and high quality were grown by radio-frequency molecular beam epitaxy on sapphire (0001) substrate with a double A1N buffer layer. The buffer layer consists of a high-temperature (HT) A1N layer and a low-temperature (LT) A1N layer grown at 800℃ and 600℃, respectively. It is demonstrated that the HT-A1N layer can result in the growth of GaN epilayer in Ga-polarity and the LT-A1N layer is helpful for the improvement of the epilayer quality. It is observed that the carrier mobility of the GaN epilayer increases from 458 to 858cm^2/V.s at room temperature when the thickness of LT-A1N layer varies from 0 to 20nm. The full width at half maximum of x-ray rocking curves also demonstrates a substantial improvement in the quality of GaN epilavers by the utilization of LT-A1N layer.  相似文献   

6.
Al single crystals oriented for single slip were cyclically deformed under constant plastic strain amplitudes between 1?×?10?3 and 5?×?10?2 at 77?K. Al single crystals showed hardening to saturation at all applied shear stress amplitudes. The resultant cyclic stress–strain curve (CSSC) showed a stress plateau in a range of plastic strain amplitude from 2?×?10?3 to 2?×?10?2. Surface observation revealed that multiple slip systems were active even at the strain amplitude in the plateau region. At plastic strain amplitudes corresponding to the plateau of the CSSC, persistent slip bands (PSBs) were formed parallel to the primary slip plane. In the PSBs, well-developed dislocation walls parallel to the {100} planes were observed. The microstructure in the PSBs was explained by the fact of multiple activation of the primary and critical slip systems. The above results indicate that the high stacking fault energy of Al is an important factor affecting the fatigue behaviour even at 77?K.  相似文献   

7.
GaN have sphalerite structure (Cubic-GaN) and wurtzite structure (hexagonal GaN). We report the H-GaN epilayer with a LT-AlN buffer layer has been grown on Si(1 1 1) substrate by metal-organic chemical vapor deposition (MOCVD). According to the FWHM values of 0.166° and 14.01 cm−1 of HDXRD curve and E2 (high) phonon of Raman spectrum respectively, we found that the crystal quality is perfect. And based on the XRD spectrum, the crystal lattice constants of Si (a = 5.3354 ?) and H-GaN (aepi = 3.214 ?, cepi = 5.119 ?) have been calculated for researching the tetragonal distortion of the sample. These results indicate that the GaN epilayer is in tensile strain and Si substrate is in compressive strain which were good agreement with the analysis of Raman peaks shift. Comparing with typical values of screw-type (Dscrew = 7 × 108 cm−2) and edge-type (Dedge = 2.9 × 109 cm−2) dislocation density, which is larger than that in GaN epilayers growth on SiC or sapphire substrates. But our finding is important for the understanding and application of nitride semiconductors.  相似文献   

8.
利用高分辨X射线衍射(HRXRD)与拉曼散射光谱(Raman scattering spectra)研究了氮化处理与低温AlN缓冲层对低压金属有机化学气相沉积(LP-MOCVD)在r面蓝宝石衬底上外延的a面GaN薄膜中的残余应变的影响。实验结果表明:与氮化处理后生长的a-GaN相比,使用低温AlN缓冲层后生长的a-GaN具有较小的摇摆曲线的半高宽和较低的残余应变,而且其结构各向异性和残余应变各向异性也均有一定程度的降低。因此,与氮化处理相比,低温AlN缓冲层更有利于a-GaN的生长。  相似文献   

9.
B. Liu  J. Gao  K.M. Wu  C. Liu 《Solid State Communications》2009,149(17-18):715-717
AlN films were grown at 785 °C on (0001) sapphire substrates by radio-frequency assisted molecular beam epitaxy. Post-growth rapid thermal annealing (RTA) was carried out from 900 to 1200 °C for 10 s in flowing N2. The morphological and structural properties of the AlN epilayers before and after the RTA were studied by atomic force microscopy, x-ray diffraction and transmission electron microscopy. It is found that the threading dislocations can be decreased to an order of magnitude by using an interlayer growth method. The surface roughness (RMS) of the AlN thin films becomes larger with the increase of annealing temperature. The full width at half maximum of AlN (0002) rocking curve reaches its minimum after the RTA at 1000 °C.  相似文献   

10.
We report on the stress–density and rate-dependent response for Ta, ramp compressed to 330?GPa with strain rates up to 5?×?108?s?1. We employ temporally shaped laser drives to compress Ta stepped foils over several to tens of nanoseconds. Lagrangian wave-profile analysis reveals a stress–density relationship which falls below the Hugoniot, above the hydrostat, and is consistent with ramp-compression experiments at lower strain rates. We also report on the peak elastic stress prior to plastic deformation as a function of strain rate for laser-driven ramp and shock-compression data spanning the 1–50?×?107?s?1 strain-rate range. When combined with previously published lower strain data (101–107?s?1), we observe a change in rate dependence, suggesting a transition from thermally activated to defect-limited (phonon drag) dislocation motion occurring at a strain rate of about 105?s?1.  相似文献   

11.
High-quality ZnO thin films were grown on a-plane sapphire substrates by plasma-assisted molecular beam epitaxy. X-ray diffraction and transmission electron microscopy reveal that the ZnO films have high structural quality and an atomically sharp ZnO/Al2O3 interface. The full width at half maximum values of the 0002 and $30\bar{3}2$ ZnO ω-rocking curves are 467.8 and 813.5 arc sec for a 600 nm thick ZnO film. A screw dislocation density of 4.35×108 cm?2 and an edge dislocation density of 3.38×109 cm?2 are estimated by X-ray diffraction. The surface of the ZnO epilayers contains hexagonal pits, which can be observed in the Zn-polar ZnO. The films have a resistivity of 0.119 Ω?cm, an electron concentration of 6.85×1017 cm?3, and a mobility of 76.5 cm2?V?1?s?1 at room temperature. Low temperature photoluminescence measurements show good optical properties comparable to ZnO single crystals.  相似文献   

12.
Full-scale atomistic simulations by the nudged elastic band method are performed to determine the energetics and core structures of dislocations in a Ni lattice using an embedded-atom method potential. We find that for an edge dislocation, the potential yields very weak coupling between the partials which move almost individually. For a screw dislocation, the coupling between the partials is somewhat stronger and the partials move with some dependence. As expected, the results indicate that stacking fault energy has a controlling influence on the coupling behaviour of the partials. The effective Peierls energies and stresses are 1.30?×?10?6?eV/Å and 2.79?×?10?6?μ for the edge dislocation, and 1.62?×?10?4?eV/Å and 2.02?×?10?4?μ for the screw dislocation.  相似文献   

13.
AlN epilayers are grown directly on sapphire(0001)substrates each of which has a low temperature AlN nucleation layer.The effects of pretreatments of sapphire substrates,including exposures to NH3/H2and to H2only ambients at different temperatures,before the growth of AlN epilayers is investigated.In-plane misoriented crystals occur in N-polar AlN epilayers each with pretreatment in a H2only ambient,and are characterized by six 60°-apart peaks with splits in each peak in(10ˉ12)phi scan and two sets of hexagonal diffraction patterns taken along the[0001]zone axis in electron diffraction.These misoriented crystals can be eliminated in AlN epilayers by the pretreatment of sapphire substrates in the NH3/H2ambient.AlN epilayers by the pretreatment of sapphire substrates in the NH3/H2ambient are Al-polar.Our results show the pretreatments and the nucleation layers are responsible for the polarities of the AlN epilayers.We ascribe these results to the different strain relaxation mechanisms induced by the lattice mismatch of AlN and sapphire.  相似文献   

14.
Response of Zr–2.5 wt.% Nb alloy pressure tube, used in PHWR nuclear reactors, to 315 keV Ar9+ ion irradiation at room temperature was investigated in the fluence range of 3.1?×?1015–4.17?×?1016 Ar9+?cm?2. Changes in microstructural parameters, viz., the size of coherently scattering domains, microstrain and dislocation density, upon irradiation were ascertained through grazing incidence X-ray diffraction. In general, a decrease in domain size was observed with fluence with a corresponding increase in microstrain and dislocation density. Residual stress measurement showed the development of compressive stresses in place of tensile after irradiation. Transmission electron microscopy showed the formation of dislocation loops of ?a?-type and ?c?-type during irradiation. The hardness of irradiated samples, probed through nanoindentation technique, was found to be higher in comparison with unirradiated samples. The above findings have been rationalised on the basis of the defects generated during the Ar9+ ion irradiation.  相似文献   

15.
汪莱  王磊  任凡  赵维  王嘉星  胡健楠  张辰  郝智彪  罗毅 《物理学报》2010,59(11):8021-8025
研究了在分子束外延制备的AlN/蓝宝石模板上采用金属有机物化学气相外延生长的非故意掺杂GaN的材料性质.采用X射线衍射(XRD)、透射电镜(TEM)和原子力显微镜研究了AlN模板的晶体质量和表面相貌对GaN的影响.结果表明,当AlN的表面粗糙度较小时,尽管AlN模板的位错密度较高((102)面XRD ω扫描半高全宽900—1500 arcsec),但生长得到的GaN依然具有和在蓝宝石衬底上采用"二步法"生长的GaN可比拟的晶体质量((002)面XRD ω扫描半高全宽200—30 关键词: 氮化镓 氮化铝 金属有机物化学气相外延  相似文献   

16.
Abstract

The effect of initial dislocation density on subsequent dislocation evolution and strain hardening in FCC aluminium alloy under laser shock peening (LSP) was investigated by using three-dimension discrete dislocation dynamics (DD) simulation. Initial dislocations were randomly generated and distributed on slip planes for three different dislocation densities of 4.21 × 1012, 8.12 × 1012 and 1.26 × 1013 m?2. Besides, variable densities of prismatic loops were introduced into the DD cells as nanoprecipitates to study the dislocation pinning effect. The flow stresses as a function of strain rate obtained by DD simulation are compared with relevant experimental data. The results show a significant dislocation density accumulation in the form of dislocation band-like structures under LSP. The overall yield strength in FCC aluminium alloy decreases with increasing initial dislocation density and forest dislocation strengthening becomes negligible under laser induced ultra-high strain rate deformation. In addition, yield strength is enhanced by increasing the nanoprecipitate density due to dislocation pinning effect.  相似文献   

17.
We investigate effects of nitridation on AlN morphology, structural properties and stress. It is found that 3min nitridation can prominently improve AlN crystal structure, and slightly smooth the surface morphology. However, 10min nitridation degrades out-of-plane crystal structure and surface morphology instead. Additionally, 3-min nitridation introduces more tensile stress (1.5 GPa) in AlN films, which can be attributed to the weaker islands 2D coalescent. Nitridation for lOmin can introduce more defects, or even forms polycrystallinity interlayer, which relaxes the stress. Thus, the stress in AlN with 10 min nitridation decreases to -0.2 GPa compressive stress.  相似文献   

18.
Silicon carbide (SiC) single crystals with the 6H polytype structure were irradiated with 4.0-MeV Au ions at room temperature (RT) for increasing fluences ranging from 1?×?1012 to 2?×?1015 cm?2, corresponding to irradiation doses from ~0.03 to 5.3 displacements per atom (dpa). The damage build-up was studied by micro-Raman spectroscopy that shows a progressive amorphization by the decrease and broadening of 6H-SiC lattice phonon peaks and the related growth of bands assigned to Si–Si and C–C homonuclear bonds. A saturation of the lattice damage fraction deduced from Raman spectra is found for ~0.8?dpa (i.e. ion fluence of 3?×?1014 cm?2). This process is accompanied by an increase and saturation of the out-of-plane expansion (also for ~0.8?dpa), deduced from the step height at the sample surface, as measured by phase-shift interferometry. Isochronal thermal annealing experiments were then performed on partially amorphous (from 30 to 90%) and fully amorphous samples for temperatures from 200 °C up to 1500 °C under vacuum. Damage recovery and densification take place at the same annealing stage with an onset temperature of ~200 °C. Almost complete 6H polytype regrowth is found for partially amorphous samples (for doses lower than 0.8 dpa) at 1000 °C, whereas a residual damage and swelling remain for larger doses. In the latter case, these unrelaxed internal stresses give rise to an exfoliation process for higher annealing temperatures.  相似文献   

19.
Q. Xu  T. Yoshiie 《哲学杂志》2013,93(28):3716-3726
The formation of Cu precipitates and point defect clusters was investigated in two Fe–Cu binary model alloys, Fe–0.3Cu and Fe–0.6Cu, irradiated at 573?K at three different damage rates, namely 3.8?×?10?10, 1.5?×?10?8 and 5?×?10?8?dpa (displacements per atom)/s, up to about 1.6?×?10?2?dpa. Results of positron annihilation experiments indicated that Cu precipitates were formed in these irradiations with different damage rates. The growth of Cu precipitates does not increase monotonously with increasing irradiation dose, but it rather depends on the nucleation and growth of microvoids. It is also clear that the nucleation and growth of microvoids are influenced by the irradiation dose rate.  相似文献   

20.
Magnetic reversal mechanism of the Sub/AlN5 nm/[CoPt2 nm/AlN5 nm]5 nano multilayer film, which shows strong perpendicular magnetic anisotropy (Ku=6.7×106 erg/cm3), has been studied. The angle-dependent magnetic hysteresis loops of this highly perpendicular anisotropic CoPt/AlN multilayer film were measured in the present work, applying a magnetic field along different angles φ with respect to the film normal. It demonstrates that the magnetic reversal of the CoPt ultrathin layers in the CoPt/AlN multilayer film is occurred by the reversible magnetization rotation and the irreversible displacement of domain walls. The φ-dependent part of coercive field is resulted from the internal stress according to the Kondorsky and Kersten model. The φ-independent part of coercive field implies some random and isotropy pinning centers (e.g., vacancies, dislocations, grain boundaries) in the ultrathin CoPt layers. Our work is useful for coercivity control of metal/ceramics layered structures, in particular the perpendicular magnetic tunneling junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号