首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Periodic arrays of hybrid-shunted piezoelectric patches are used to control the band-gaps of phononic metamaterial beams. Passive resistive-inductive(RL) shunting circuits can produce a narrow resonant band-gap(RG), and active negative capacitive(NC) shunting circuits can broaden the Bragg band-gaps(BGs). In this article, active NC shunting circuits and passive resonant RL shunting circuits are connected to the same piezoelectric patches in parallel, which are usually called hybrid shunting circuits, to control the location and the extent of the band-gaps. A super-wide coupled band-gap is generated when the coupling between RG and the BG occurs. The attenuation constant of the infinite periodic structure is predicted by the transfer matrix method, which is compared with the vibration transmittance of a finite periodic structure calculated by the finite element method. Numerical results show that the hybrid-shunting circuits can make the band-gaps wider by appropriately selecting the inductances, negative capacitances, and resistances.  相似文献   

2.
A novel metamaterial multi-span beam with periodic simple supports and local resonators is designed and investigated. The frequency responses of the proposed metamaterial multi-span beam are computed by the spectral element method (SEM). The accuracy and feasibility of the SEM are verified by the finite element method (FEM) and the vibration experiments. The results show that the metamaterial multi-span beam could generate both the local resonance band-gaps in the low-frequency ranges and the Bragg band-gaps in the medium and high frequency regions. By adjusting the natural frequencies of the local resonators, the thickness of the base beam and the length of the unit-cell, the local resonance and the Bragg band-gaps can be controlled, respectively. The coupling effects of these two kinds of band-gaps are investigated by the parametrical design, which broadens the band-gaps and consequently improves the vibration reduction performance.  相似文献   

3.
Semi-active vibration control based on magnetorheological (MR) materials offers excellent potential for high bandwidth control through rapid variations in the rheological properties of the fluid under varying magnetic field. Such fluids may be conveniently applied to partial or more critical components of a large structure to realize more efficient and compact vibration control mechanism with variable damping. This study investigates the properties and vibration responses of a partially treated multi-layer MR fluid beam. The governing equations of a partially treated multi-layered MR beam are formulated using finite element method and Ritz formulation. The validity of the proposed finite element formulations is demonstrated by comparing the results with those obtained from the Ritz formulation and the experimental measurements. The properties of different configurations of a partially treated MR-fluid beam are evaluated to investigate the influences of the location and length of the MR-fluid for different boundary conditions. The properties in terms of natural frequencies and loss factors corresponding to various modes are evaluated under different magnetic field intensities and compared with those of the fully treated beams. The effect of location of the fluid treatment on deflection mode shapes is also investigated. The forced vibration responses of the various configurations of partially treated MR sandwich beam are also evaluated under harmonic force excitations. The results suggest that the natural frequencies and transverse displacement response of the partially treated MR beams are strongly influenced not only by the intensity of the applied magnetic field, but also by the location and the length of the fluid pocket. The application of partial treatment could also alter the deflection pattern of the beam, particularly the location of the peak deflection.  相似文献   

4.
The propagation of coupled flexural-torsional vibration in the periodic beam including warping effect is investigated with the transfer matrix theory. The band structures of the periodic beam, both including warping effect and ignoring warping effect, are obtained. The frequency response function of the finite periodic beams is simulated with finite element method, which shows large vibration attenuation in the frequency range of the gap as expected. The effect of warping stiffness on the band structure is studied and it is concluded that substantial error can be produced in high frequency range if the effect is ignored. The result including warping effect agrees quite well with the simulated result.  相似文献   

5.
Wave propagation characteristics of a thin composite cylinder stiffened by periodically spaced ring frames and axial stringers are investigated by an analytical method using periodic structure theory. It is used for calculating propagation constants in axial and circumferential directions of the cylindrical shell subject to a given circumferential mode or axial half-wave number. The propagation constants corresponding to several different circumferential modes and/or half-wave numbers are combined to determine the vibrational energy ratios between adjacent basic structural elements of the two-dimensional periodic structure. Vibration analyses to validate the theoretical development have been carried out on sufficiently detailed finite element model of the same dimension and configuration as the stiffened cylinder and very good agreement is obtained between the analytical and the dense finite element results. The effects of shell material properties and the length of each periodic element on the wave propagation characteristics are also examined based on the current analytical approach.  相似文献   

6.
This paper deals with geometrically nonlinear vibrations of sandwich beams with viscoelastic materials. For this purpose, a new finite element formulation has been developed, in which a zig-zag model is used to describe the displacement field. The viscoelastic behaviour is handled by using hereditary integrals and their relationships with complex moduli. An efficient solution procedure based on the harmonic balance method is also developed. To demonstrate its abilities, various problems of nonlinear vibrations of sandwich beams are considered. First, the results derived from the proposed approach are compared with those of nonlinear dynamic analyses using direct time integration and to experimental data. Then, the influence of the vibration amplitude on the damping properties of sandwich beams is investigated. The effect of an initial axial strain is also examined.  相似文献   

7.
In this paper, a family of sub-cell finite volume schemes for solving the hyperbolic conservation laws is proposed and analyzed in one-dimensional cases. The basic idea of this method is to subdivide a control volume (main cell) into several sub-cells and the finite volume discretization is applied to each of the sub-cells. The averaged values on the sub-cells of current and face neighboring main cells are used to reconstruct the polynomial distributions of the dependent variables. This method can achieve arbitrarily high order of accuracy using a compact stencil. It is similar to the spectral volume method incorporating with PNPM technique but with fundamental differences. An elaborate utilization of these differences overcomes some shortcomings of the spectral volume method and results in a family of accurate and robust schemes for solving the hyperbolic conservation laws. In this paper, the basic formulation of the proposed method is presented. The Fourier analysis is performed to study the properties of the one-dimensional schemes. A WENO limiter based on the secondary reconstruction is constructed.  相似文献   

8.
郁殿龙  刘耀宗  邱静  王刚  温激鸿 《中国物理》2005,14(8):1501-1506
本文研究了由两种材料组合构成的周期性薄壁开口梁的弯曲和扭转双耦合振动。基于双耦合振动方程,给出了平面波展开法。当填充比不变时,晶格常数是影响带隙相对宽带的一个因素;当晶格常数和填充比不变时,杨氏模量是影响带隙宽带的主要因素,而不是密度。利用有限元法计算了有限周期结构的振动频率响应,在带隙频率范围内,振动衰减40dB左右。这些发现对于声子晶体的应用具有重要意义。  相似文献   

9.
An exact analytical method is presented for the analysis of forced vibrations of uniform, open-section, single- and multi-bay periodic channels. The centre of gravity and the shear centre of the channel cross-sections do not coincide, and hence the flexural vibrations in two mutually perpendicular directions and the torsional vibrations are all coupled. The ends of the channels and the periodic intermediate supports are modelled with springs having finite flexural and torsional stiffnesses. Single-point force excitation has been considered throughout the study, although the developed method is also capable of dealing with multi-point excitation. The channels are assumed to be of Euler-Bernoulli type beams. The study also takes the effects of cross-sectional warping into consideration. The developed method is suitable for structurally damped analysis and in addition to yielding forced vibration characteristics; it also straightforwardly reveals the free vibration properties like the mode shapes.  相似文献   

10.
Piezoelectric Kagome grids can be considered as a kind of functional material because they have vibration isolation performance and can transform mechanical energy to electric energy. In this study, the dynamic properties of three-dimensional (3D) piezoelectric Kagome grids without and with material defects are studied based on the frequency-domain responses. The spectral element method (SEM) is adopted to solve a 3D piezoelectric beam which contains bending components in two planes, tensional components, and torsional components. The dynamic stiffness matrix of a spectral piezoelectric beam is derived. Highly accurate solutions in the frequency-domain are obtained by solving the equation of motion of the whole structure. Compared with the results from the FEM and those in the existing literature, it can be seen that the SEM can be effectively used to study the 3D piezoelectric Kagome grids. The band-gap properties of Kagome grid and defect state properties of Kagome grid with material defects are analyzed. The effect of the piezoelectric parameter on the band-gap property is investigated further.  相似文献   

11.
The spatial distribution of material phases within a periodic composite can be engineered to produce band gaps in its frequency spectrum. Applications for such composite materials include vibration and sound isolation. Previous research focused on utilizing topology optimization techniques to design two-dimensional (2D) periodic materials with a maximized band gap around a particular frequency or between two particular dispersion branches. While sizable band gaps can be realized, the possibility remains that the frequency bandwidth of the load that is to be isolated might exceed the size of the band gap. In this paper, genetic algorithms are used to design squared bi-material unit cells with a maximized sum of band-gap widths, with or without normalization relative to the central frequency of each band gap, over a prescribed total frequency range of interest. The optimized unit cells therefore exhibit broadband frequency isolation characteristics. The effects of the ratios of contrasting material properties are also studied. The designed cells are subsequently used, with varying levels of material damping, to form a finite vibration isolation structure, which is subjected to broadband loading conditions. Excellent isolation properties of the synthesized material are demonstrated for this structure.  相似文献   

12.
张振方  郁殿龙  刘江伟  温激鸿 《物理学报》2018,67(7):74301-074301
声子晶体管路的带隙特性,可以实现管路系统在特定频率下的噪声控制.利用二维模态匹配法推导出单个内插扩张室元胞的传递矩阵,结合Bloch定理,得到声子晶体管路的能带结构计算方法;验证了二维方法在计算能带结构时的准确性.研究发现,内插扩张室声子晶体管路存在布拉格带隙和局域共振带隙.进一步研究了晶格常数以及内插管长度对能带结构的影响,结果表明,晶格常数主要控制布拉格带隙,而内插管长度对局域共振带隙有较大的影响,并研究了两种参数变化下的带隙耦合.研究结果可以为管路降噪设计提供新的思路.  相似文献   

13.
The spatial distribution of material phases within a periodic composite can be engineered to produce band gaps in its frequency spectrum. Applications for such composite materials include vibration and sound isolation. Previous research focused on utilizing topology optimization techniques to design two-dimensional (2D) periodic materials with a maximized band gap around a particular frequency or between two particular dispersion branches. While sizable band gaps can be realized, the possibility remains that the frequency bandwidth of the load that is to be isolated might exceed the size of the band gap. In this paper, genetic algorithms are used to design squared bi-material unit cells with a maximized sum of band-gap widths, with or without normalization relative to the central frequency of each band gap, over a prescribed total frequency range of interest. The optimized unit cells therefore exhibit broadband frequency isolation characteristics. The effects of the ratios of contrasting material properties are also studied. The designed cells are subsequently used, with varying levels of material damping, to form a finite vibration isolation structure, which is subjected to broadband loading conditions. Excellent isolation properties of the synthesized material are demonstrated for this structure.  相似文献   

14.
In this paper, numerical models are proposed for linear and nonlinear vibrations analyses of viscoelastic sandwich beams with various viscoelastic frequency dependent laws using the finite element based solution. Real and various complex eigenmodes approaches are investigated as Galerkin bases. Based on harmonic balance method, simplified and general approaches are developed for nonlinear vibration analysis. Analytical frequency-amplitude and phase-amplitude relationships are elaborated based on the numerically computed complex eigenmodes. The equivalent loss factors and frequencies as well as the forced harmonic response and phase curves are performed for sandwich beams with various boundary conditions and frequency dependent viscoelastic laws.  相似文献   

15.
A method of hypotheses has been developed to construct a mathematical model of micropolar elastic thin beams. The method is based on the asymptotic properties of the solution ofan initial boundary value problem in a thin rectangle within the micropolar theory of elasticity with independent displacement and rotation fields. An applied model of the dynamics of micropolar elastic thin beams was constructed in which transverse shear strains and related strains are taken into account. The constructed dynamics model was used to solve problems of free and forced vibrations of a micropolar beam. Free vibration frequencies and modes, forced vibration amplitudes, and resonance conditions were determined. The obtained numerical calculation results show the specific features of free vibrations of thin beams. Micropolar thin beams have a free vibration frequency which is almost independent of the thin beam size, but depends only on the physical and inertial properties of the micropolar material. It is shown for the micropolar material that the free vibration frequency values of beams can be readily adjusted and hence a large vibration frequency separation can be achieved, which is important for studying resonance.  相似文献   

16.
Nonlinear parametric vibration of axially accelerating viscoelastic beams is investigated via an approximate analytical method with numerical confirmations. Based on nonlinear models of a finite-small-stretching slender beam moving at a speed with a periodic fluctuation, a solvability condition is established via the method of multiple scales for subharmonic resonance. Therefore, the amplitudes of steady-state periodic responses and their existence conditions are derived. The amplitudes of stable steady-state responses increase with the amplitude of the axial speed fluctuation, and decrease with the viscosity coefficient and the nonlinear coefficient. The minimum of the detuning parameter which causes the existence of a stable steady-state periodic response decreases with the amplitude of the axial speed fluctuation, and increases with the viscosity coefficient. Numerical solutions are sought via the finite difference scheme for a nonlinear partial-differential equation and a nonlinear integro-partial-differential equation. The calculation results qualitatively confirm the effects of the related parameters predicted by the approximate analysis on the amplitude and the existence condition of the stable steady-state periodic responses. Quantitative comparisons demonstrate that the approximate analysis results have rather high precision. Supported by the National Outstanding Young Scientists Foundation of China (Grant No. 10725209), the National Natural Science Foundation of China (Grant No. 10672092), Scientific Research Project of Shanghai Municipal Education Commission (Grant No. 07ZZ07), and Shanghai Leading Academic Discipline Project (Grant No. Y0103)  相似文献   

17.
The geometrically nonlinear free vibrations of beams with rectangular cross section are investigated using a p-version finite element method. The beams may vibrate in space, hence they may experience longitudinal, torsional and non-planar bending deformations. The model is based on Timoshenko’s theory for bending and assumes that, under torsion, the cross section rotates as a rigid body and is free to warp in the longitudinal direction, as in Saint-Venant’s theory. The geometrical nonlinearity is taken into account by considering Green’s nonlinear strain tensor. Isotropic and elastic beams are investigated and generalised Hooke’s law is used. The equation of motion is derived by the principle of virtual work. Mostly clamped–clamped beams are investigated, although other boundary conditions are considered for validation purposes. Employing the harmonic balance method, the differential equations of motion are converted into a nonlinear algebraic form and then solved by a continuation method. One constant term, odd and even harmonics are assumed in the Fourier series and convergence with the number of harmonics is analysed. The variation of the amplitude of vibration with the frequency of vibration is determined and presented in the form of backbone curves. Coupling between modes is investigated, internal resonances are found and the ensuing multimodal oscillations are described. Some of the couplings discovered lead from planar oscillations to oscillations in the three dimensional space.  相似文献   

18.
肖毅  郭旗 《物理学报》2008,57(2):923-933
利用数值模拟的方法研究了倾斜入射的傍轴光束在有限宽非线性平板波导内的传输规律.研究发现,当不同波长相同束宽的光束各以临界功率倾斜入射波导时,如果倾斜角、入射点都一样,它们将沿大致相同的周期性的Z字形路径传输;如果光束功率进一步增大,相邻反射点之间的间距随传输距离有逐渐变大的趋势,Z字形路径不再有严格的周期性;当功率相当大时,光束将沿波导z方向传输,不再在波导的两个边界之间来回反射.利用倾斜入射光束在波导内的传输路径随功率而变的特点,设计了一个功率开关和一个光时分解复用器. 关键词: 空间光孤子 有限宽非线性平板波导 全光器件  相似文献   

19.
Flexural vibration of non-uniform Rayleigh beams having single-edge and double-edge cracks is presented in this paper. Asymmetric double-edge cracks are formed as thin transverse slots with different depths at the same location of opposite surfaces. The cracks are modelled as breathing since the bending of the beam makes the cracks open and close in accordance with the direction of external moments. The presented crack model is used for single-edge cracks and double-edge cracks having different depth combinations. The energy method is used in the vibration analysis of the cracked beams. The consumed energy caused by the cracks opening and closing is obtained along the beam's length together with the contribution of tensile and compressive stress fields that come into existence during the bending. The total energy is evaluated for the Rayleigh-Ritz approximation method in analysing the vibration of the beam. Examples are presented on simply supported beams having uniform width and cantilever beams which are tapered. Good agreements are obtained when the results from the present method are compared with the results of Chondros et al. and the results of the commercial finite element program, Ansys©. The effects of breathing in addition to crack depth's asymmetry and crack positions on the natural frequency ratios are presented in graphics.  相似文献   

20.
The diffraction and refraction of light beam in optical periodic structures can be determined by the photonic band-gap structures of spatial frequency. In this paper, by employing the equation governing the nonlinear light propagations in photorefractive crystals, we study the photonic band-gap structures, Bloch modes, and light transmission properties of optically induced planar waveguide arrays. The relationship between the photonic band-gap structures and the light diffraction characteristics is discussed in detail. Then the influence of the parameters of planar waveguide arrays on the band-gaps structures, Bloch modes, and linear light transmissions is analyzed. It is revealed that the linear light transmission properties of waveguide arrays are tightly related to the diffraction relationships determined by band-gap structures. And the Bloch modes corresponding to different transmission bands can be excited by different excitation schemes. Both the increases of the intensity and the period of the array writing beam will lead to the broadening of the forbidden gaps and the concentration of the energy of the Bloch modes to the high-index regions. Furthermore, the broadening of the forbidden gaps will lead to separation and transition between the Bloch modes of neighboring bands around the Bragg angle. Additionally, with the increase of the intensity of the array writing beams, the influences from light intensity will tend to be steady due to the saturation of the photorefractive effect. Supported by the Youth for Northwestern Polytechnical University (NPU) Teachers Scientific and Technological Innovation Foundation, the NPU Foundation for Fundamental Research, and the Doctorate Foundation of NPU (Grant No. CX200514)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号