首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The generalized differential quadrature method (GDQM) is employed to consider the free vibration and critical speed of moderately thick rotating laminated composite conical shells with different boundary conditions developed from the first-order shear deformation theory (FSDT). The equations of motion are obtained applying Hamilton’s concept, which contain the influence of the centrifugal force, the Coriolis acceleration, and the preliminary hoop stress. In addition, the axial load is applied to the conical shell as a ratio of the global critical buckling load. The governing partial differential equations are given in the expressions of five components of displacement related to the points lying on the reference surface of the shell. Afterward, the governing differential equations are converted into a group of algebraic equations by using the GDQM. The outcomes are achieved considering the effects of stacking sequences, thickness of the shell, rotating velocities, half-vertex cone angle, and boundary conditions. Furthermore, the outcomes indicate that the rate of the convergence of frequencies is swift, and the numerical technique is superior stable. Three comparisons between the selected outcomes and those of other research are accomplished, and excellent agreement is achieved.  相似文献   

2.
This paper presents a combined application of the finite element method (FEM) and the differential quadrature method (DQM) to vibration and buckling problems of rectangular plates. The proposed scheme combines the geometry flexibility of the FEM and the high accuracy and efficiency of the DQM. The accuracy of the present method is demonstrated by comparing the obtained results with those available in the literature. It is shown that highly accurate results can be obtained by using a small number of finite elements and DQM sample points. The proposed method is suitable for the problems considered due to its simplicity and potential for further development.  相似文献   

3.
An analytical solution for buckling of an eccentrically stiffened sandwich truncated conical shell is investigated. The shell consists of two functionally graded material (FGM) coating layers and a core layer which are metal or ceramic subjected to an axial compressive load and an external uniform pressure. Shells are reinforced by stringers and rings, in which the material properties of shells and stiffeners are graded in the thickness direction following a general sigmoid law distribution. Two models of coated shell-stiffener arrangements are investigated. The change of the spacing between stringers in the meridional direction is taken into account. A couple set of three-variable-coefficient partial differential equations in terms of displacement components are solved by the Galerkin method. A closed-form expression for determining the buckling load is obtained. The numerical examples are presented and compared with previous works.  相似文献   

4.
In this paper, an analytical solution for the free vibration of rotating composite conical shells with axial stiffeners (stringers) and circumferential stiffener (rings), is presented using an energy-based approach. Ritz method is applied while stiffeners are treated as discrete elements. The conical shells are stiffened with uniform interval and it is assumed that the stiffeners have the same material and geometric properties. The study includes the effects of the coriolis and centrifugal accelerations, and the initial hoop tension. The results obtained include the relationship between frequency parameter and circumferential wave number as well as rotating speed at various angles. Influences of geometric properties on the frequency parameter are also discussed. In order to validate the present analysis, it is compared with other published works for a non-stiffened conical shell; other comparison is made in the special case where the angle of the stiffened conical shell goes to zero, i.e., stiffened cylindrical shell. Good agreement is observed and a new range of results is presented for rotating stiffened conical shells which can be used as a benchmark to approximate solutions.  相似文献   

5.
采用重采样微分求积法求解了变截面欧拉梁的自由振动问题。推导了变截面梁的控制方程离散格式,采用重采样矩阵方法对边界条件进行处理,给出了变截面梁自由振动算法。采用本文方法对不同类型截面形式和不同边界条件的变截面梁进行自由振动分析,并和其他解法进行比较。计算结果表明,本文方法可以适用于不同变截面类型和不同边界条件,计算精度与解析解吻合良好,具有良好的收敛性能。在同等精度条件下网格点数少于现有计算方法。重采样转换矩阵边界处理方法相比于传统边界处理方法具有更快的收敛性能。  相似文献   

6.
In this study, the non-linear buckling behavior of truncated conical shells made of functionally graded materials (FGMs), subject to a uniform axial compressive load, has been investigated using the large deformation theory with von the Karman-Donnell-type of kinematic non-linearity. The material properties of functionally graded shells are assumed to vary continuously through the thickness of the shell. The variation of properties followed an arbitrary distribution in terms of the volume fractions of the constituents. The fundamental relations, the modified Donnell type non-linear stability and compatibility equations of functionally graded truncated conical shells are obtained and are solved by superposition and Galerkin methods and the upper and lower critical axial loads have been found analytically. Finally, the influences of the compositional profile variations and the variation of the shell geometry on the upper and lower critical axial loads are investigated. Comparing the results of this study with those in the literature validates the present analysis.  相似文献   

7.
By using Donnell's simplication and starting from the displacement type equations of conical shells, and introducing a displacement functionU(s,,) (In the limit case, it will be reduced to cylindrical shell displacement function introduced by V. S. Vlasov) and a generalized loadq,(s,,),the equations of conical shells are changed into an eighth—order solvable partial differential equation about the displacement functionU(s,,). As a special case, the general bending problem of conical shells on Winkler foundation has been studied. Detailed numerical results and boundary coefficients for edge unit loads are obtained.The project supported by the National Natural Science Foundation of China.  相似文献   

8.
Axisymmetric buckling analysis is presented for moderately thick laminated shallow, truncated conical caps under transverse load. Buckling under uniformly distributed loads and ring loads applied statically or as step function loads is considered. Marguerre-type, first-order shear deformation shallow shell theory is formulated in terms of transverse deflection w, the rotation ψ of the normal to the mid-surface and the stress function Φ. The governing equations are solved by the orthogonal point collocation method. Truncated conical caps with a circular opening, which is either free or plugged by a rigid central mass, have been analysed for clamped and simple supports with movable and immovable edge conditions. Typical numerical results are presented illustrating the effect of various parameters.  相似文献   

9.
The problem of axisymmetric nonlinear vibration for shallow thin spherical and conical shells when temperature and strain fields are coupled is studied. Based on the large deflection theories of yon Ktirrntin and the theory of thermoelusticity, the whole governing equations and their simplified type are derived. The time-spatial variables are separated by Galerkin ‘ s technique, thus reducing the governing equations to a system of time-dependent nonlinear ordinary differential equation. By means of regular perturbation method and multiple-scales method, the first-order approximate analytical solution for characteristic relation of frequency vs amplitude parameters along with the decay rate of amplitude are obtained, and the effects of different geometric parameters and coupling factors us well us boundary conditions on thermoelustically coupled nonlinear vibration behaviors are discussed.  相似文献   

10.
In this study, the effects of elastic foundations(EFs) and carbon nanotube(CNT) reinforcement on the hydrostatic buckling pressure(HBP) of truncated conical shells(TCSs) are investigated. The first order shear deformation theory(FOSDT) is generalized to the buckling problem of TCSs reinforced with CNTs resting on the EFs for the first time. The material properties of composite TCSs reinforced with CNTs are graded linearly according to the thickness coordinate. The Winkler elastic foundation(W-EF...  相似文献   

11.
The nonlinear thermal buckling of symmetrically laminated cylindrically orthotropic shallow spherical shell under temperature field and uniform pressure including transverse shear is studied. Also the analytic formulas for determining the critical buckling loads under different temperature fields are obtained by using the modified iteration method. The effect of transverse shear deformation and different temperature fields on critical buckling load is discussed.  相似文献   

12.
由于多层地基的一维非线性固结问题求解的复杂性,其解析解很难求得。本文基于Davis和Raymond一维非线性固结理论,利用DQM(Differential Quadrature Method)导了初始有效应力沿深度变化、任意边界条件、任意荷载作用下成层地基一维非线性固结的统一表达式,求得了孔压、有效应力和平均固结度的解答。通过解的收敛性分析讨论了DQM解的有效性。由于DQM解对于固结间题各种复杂条件具有统一的矩阵表达式,更便于编程计算和工程应用。最后,用本文解答对三层地基一维非线性固结问题进行了讨论。  相似文献   

13.
This paper focuses on the free vibration analysis of thick, rotating laminated composite conical shells with different boundary conditions based on the three-dimensional theory, using the layerwise differential quadrature method (LW-DQM). The equations of motion are derived applying the Hamilton’s principle. In order to accurately account for the thickness effects, the layerwise theory is used to discretize the equations of motion and the related boundary conditions through the thickness of the shells. Then, the equations of motion as well as the boundary condition equations are transformed into a set of algebraic equation applying the DQM in the meridional direction. This study demonstrates the applicability, accuracy, stability and the fast rate of convergence of the present method, for free vibration analyses of rotating thick laminated conical shells. The presented results are compared with those of other shell theories obtained using conventional methods and a special case where the angle of the conical shell approaches zero, that is, a cylindrical shell and excellent agreements are achieved.  相似文献   

14.
Abstract

In this paper, three-dimensional static and free vibration analysis of functionally graded graphene platelets-reinforced composite (FG-GPLRC) truncated conical shells, cylindrical shells and annular plates with various boundary conditions is carried out within the framework of elasticity theory. The main contribution of the present work is that formulation for free vibration and bending behavior of the FG-GPLRC truncated conical shell based on theory of elasticity has not yet been reported. Additionally, formulation and solution for cylindrical shell and annular plate are derived by changing the semi vertex angle in formulation and solution of FG-GPLRC truncated conical shell. A semi-analytical solution is proposed base on employing differential quadrature method (DQM) together with state-space technique. Validity of current approach is assessed by comparing its numerical results with those available in the literature. An especial attention is drawn to the role of GPLs weight fraction, patterns of GPLs distribution through the thickness direction, geometrical parameters such as semi-vertex angle, length to mid-radius ratio on natural frequencies and bending characteristics. Numerical results reveal that desirable static and free vibration response (such as lower radial deflection and higher natural frequencies) can be achieved by locating more square shaped GPLs near inner and outer surfaces.  相似文献   

15.
引入微分求积法,分析高速小展弦比机翼的气动弹性问题。将小展弦比机翼等效为悬臂板,基于一阶活塞气动力理论建立机翼颤振偏微分方程,采用微分求积法将偏微分方程转化为常微分方程,根据频率重合理论对颤振问题进行求解。分析了机翼的固有频率及颤振速度,并与有限元软件计算结果进行比较,误差在2%以内,很好的验证了微分求积法求解小展弦比机翼颤振问题的有效性。分析了机翼面积、展弦比及厚度对颤振速度的影响,结果表明,小展弦比机翼的颤振速度受结构尺寸的影响较大,颤振速度随面积和展弦比的增大而减小,随机翼厚度的增大而增大。  相似文献   

16.
基于小波微分求积法的薄板弯曲分析   总被引:1,自引:1,他引:1  
张纯  仲政 《计算力学学报》2008,25(6):863-867
利用小波微分求积法(WDQM)对任意荷载作用下的薄板弯曲问题进行了求解分析。数值算例表明,小波微分求积法与一般的DQ法相比具有很好的适用性,特别是薄板受集中荷载或不连续分布荷载作用时,由于小波基函数的紧支撑特性与其对突变信号良好的描述能力,WDQ法的精度明显优于一般的DQ法,具有良好的应用前景。  相似文献   

17.
基于修正的偶应力理论和两变量精化的剪切变形理论,建立了由Winkler-Pasternak连续弹性夹层连接的双层微板系统的自由振动模型,着重推导了系统异步振动的运动微分方程和势能泛函。融合Gauss-Lobatto求积准则和微分求积准则构造了具有C1连续性的微分求积有限元。通过与已有文献进行对比,验证了数值方法的有效性。详细讨论了各种因素对系统同步和异步振动特性的影响。结果表明,系统的自由振动特性对材料尺度参数、长宽比、长厚比以及边界条件呈现出依赖性;弹性夹层刚度仅对系统异步振动产生作用;随着模态阶次的增大,材料尺度参数和弹性夹层刚度对异步振动频率和模态的影响变得显著。  相似文献   

18.
The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress,the modified couple stress theory(MCST),and the nonlocal elasticity theories using the differential quadrature method(DQM)is presented.Main advantages of the MCST over the classical theory(CT)are the inclusion of the asymmetric couple stress tensor and the consideration of only one material length scale parameter.Based on the nonlinear von K′arm′an assumption,the governing equations of equilibrium for the micro-classical plate considering midplane displacements are derived based on the minimum principle of potential energy.Using the DQM,the biaxial and shear critical buckling loads of the micro-plate for various boundary conditions are obtained.Accuracy of the obtained results is validated by comparing the solutions with those reported in the literature.A parametric study is conducted to show the effects of the aspect ratio,the side-to-thickness ratio,Eringen’s nonlocal parameter,the material length scale parameter,Young’s modulus of the surface layer,the surface residual stress,the polymer matrix coefficients,and various boundary conditions on the dimensionless uniaxial,biaxial,and shear critical buckling loads.The results indicate that the critical buckling loads are strongly sensitive to Eringen’s nonlocal parameter,the material length scale parameter,and the surface residual stress effects,while the effect of Young’s modulus of the surface layer on the critical buckling load is negligible.Also,considering the size dependent effect causes the increase in the stiffness of the orthotropic micro-plate.The results show that the critical biaxial buckling load increases with an increase in G12/E2and vice versa for E1/E2.It is shown that the nonlinear biaxial buckling ratio decreases as the aspect ratio increases and vice versa for the buckling amplitude.Because of the most lightweight micro-composite materials with high strength/weight and stiffness/weight ratios,it is anticipated that the results of the present work are useful in experimental characterization of the mechanical properties of micro-composite plates in the aircraft industry and other engineering applications.  相似文献   

19.
潘玉华  王元丰 《计算力学学报》2011,28(4):517-522,529
研究一种含有指数型非粘滞阻尼线性多自由度振动系统的时程分析问题。该非粘滞阻尼模型假设阻尼力与质点速度的时间历程相关,数学表述为质点速度与核函数的卷积。由于阻尼模型的改变,常用的数值积分方法(如Newmark-β法、Wilson-θ法)不能直接应用于这种非粘滞阻尼系统。基于一种无条件稳定的微分求积方法,给出了这种非粘滞阻...  相似文献   

20.
微分求积法已在科学和工程计算中得到了广泛应用。然而,有关时域微分求积法的数值稳定性、计算精度即阶数等基本特性,仍缺乏系统性的分析结论。依据微分求积法的基本原理,推导证明了微分求积法的权系数矩阵满足V-变换这一重要特性;利用微分求积法和隐式Runge-Kutta法的等值性,证明了时域微分求积法是A-稳定、s级s阶的数值方法。在此基础上,为进一步提高传统微分求积法的计算精度,利用待定系数法和Padé逼近,推导出了一类新的s级2s阶的微分求积法。数值计算对比结果验证了所提出的新微分求积法比传统的微分求积法具有更高的计算精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号