首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

In this work, the electronic structure, optical properties and thermoelectric properties of the GeI2 monolayer are calculated by the first principles with the Boltzmann transport equation. The monolayer is calculated as an indirect band gap semiconductor with an indirect band gap of a value 2.19?eV. This GeI2 monolayer is good for absorbing low-energy photons, and it is insensitive to high-energy photons. The material is stable at temperatures up to 600?K, so we calculated the thermal conductivity (KL), Seebeck coefficient (S), power factor (PF) and thermoelectric figure of merit (ZT) of the GeI2 monolayer at various carrier concentrations from 300 to 600?K. Due to the lower group velocity, the GeI2 monolayer has a lower thermal conductivity of 0.48?W/m?K at 300K. In P-type doping, the power factor can up to 0.11?mW/m?K2, and its ZT value is 4.04 at 600?K of the GeI2 monolayer, indicating that the GeI2 monolayer is a potential thermoelectric material.  相似文献   

2.
First principles calculations are performed to investigate the structural and electronic properties of MX2 (M = Nb, Pt; X = S, Se) monolayers and their van der Waals (vdW) heterostructures. The dynamical stability of monolayers and vdW heterostructures is confirmed by binding energy and phonon spectra. An indirect band gap nature is found for PtS2 and PtSe2 monolayers while NbS2, NbSe2 and all vdW heterostructures are metals. The intrinsic electronic properties of both NbX2 and PtX2 are well preserved due to weak vdW contact. It is demonstrated that a p-type Schottky contact with a small barrier height is formed at NbX2-PtX2 interface. The zero tunnel barrier and higher potential drop across the interface in these contacts imply large transfer of charge carriers across the interface, making them potential candidates in nanoelectronic device applications.  相似文献   

3.
采用惰性气体保护蒸发-冷凝法制备了纳米Bi及Te粉末, 结合机械合金化和放电等离子烧结技术, 在不同烧结温度下制备出了单一物相且具有纳米层状结构及孪晶亚结构的n型Bi2Te3块体材料, 并系统研究了块体材料的晶粒尺度、微结构及其对电热传输特性的影响. SEM, TEM分析结果表明, 以纳米粉末为原料, 通过有效控制工艺条件, 可以制备出具有纳米层状结构Bi2Te3合金块体材料, 同时纳米层状结构中存在孪晶亚结构; 热电性能测试结果表明, 具有纳米层状结构及孪晶亚结构的块体试样与粗晶材料相比, 热导率大幅度降低, 在423 K附近, 热导率由粗晶材料的1.80 W/mK降至1.19 W/mK, 晶格热导率从1.16 W/mK降至0.61 W/mK, 表明纳米层状结构与孪晶亚结构共存, 有利于进一步提高声子散射, 降低晶格热导率. 其中在693 K放电等离子烧结后的试样于423K附近取得最大值的无量纲热电优值(ZT), 达到0.74.  相似文献   

4.
Structural, electronic, and optical properties of cubic Y2O3 were studied using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT). The ground-state properties were calculated and these results were in good agreement with the previous work. Furthermore, in order to understand the optical properties of cubic Y2O3, the complex dielectric function, refractive index, extinction coefficient, optical reflectivity, absorption coefficient, energy-loss function, and complex conductivity function were calculated, which were in favorable agreement with the theoretical and experimental values. We explained the origin of the absorption peaks using the theories of crystal-field and molecular-orbital bonding and investigated the relation between electronic structure and optical properties.  相似文献   

5.
Abstract

The mechanical properties and the electrical and thermal conductivity of composites based on an epoxy polymer (EP) filled with dispersed copper (Cu) and nickel (Ni) were studied. It was shown that the electrical conductivity of the composites demonstrated percolation behavior with the values of the percolation threshold being 9.9 and 4.0?vol.% for the EP-Cu and EP-Ni composites, respectively. Using the Lichtenecker model, the thermal conductivity of the dispersed metal phase in the composites, λf, was estimated as being 35?W/mK for Cu powder and 13?W/mK for Ni powder. It was shown that introduction of the filler in EP led to a decrease in the intensity of the mechanical loss tangent (tan δ) peak that was caused by the existence of an immobilized polymer layer around the filler particles which did not contribute to mechanical losses. Using several models the thickness of this layer, ΔR, was estimated. The concept of an “excluded volume” of the polymer, Vex, i.e. the volume of the immobilized polymer layer, which does not depend on the particle size and is determined solely by the value of the interaction parameter, B, was proposed.  相似文献   

6.
For better selection of “tooth-like” dental restorative materials, it is of great importance to evaluate the thermal properties of the human tooth. A simple method capable of non-destructively characterizing the thermal properties of the individual layers (dentine and enamel) of human tooth is presented. The traditional method of monotonic heating regime was combined with infrared thermography to measure the thermal diffusivities of enamel and dentine layers without physically separating them, with 4.08 (±0.178) × 107 m2/s measured for enamel and 2.01 (±0.050) × 107 m2/s for dentine. Correspondingly, the thermal conductivity was calculated to be 0.81 W/mK (enamel) and 0.48 W/mK (dentine). To examine the dependence of thermal conductivity on the configuration of dentine microstructure (microtubules), the Maxwell-Eucken and Parallel models of effective thermal conductivity are employed. The effective thermal conductivity of dentine in the direction parallel to tubules was found to be about 1.1 times higher than that perpendicular to the tubules, indicating weak anisotropy. By adopting the Series model, the bulk thermal conductivity of enamel and dentine layers is estimated to be 0.57 W/mK.  相似文献   

7.
Recently, direct Z-scheme heterostructures have attracted much attention because of their outstanding electronic properties and excellent photocatalytic performance. In this article, the electronic, optical and photocatalytic properties of SnC/PtSe2 heterojunction are systematically explored via first-principles calculations. Evidence suggests that a Type-Ⅱ band alignment as well as an indirect bandgap of 1.35 eV can be observed in the SnC/PtSe2 heterojunction. The combined influence of the built-in electric field from SnC to PtSe2 and the band bending causes a Z-scheme carrier migration mechanism. At biaxial strains of −3%–5%, the band edge positions of the heterojunction are able to cross the redox potential of water. The light absorption coefficient of 4.21 × 105 cm−1 and the energy conversion efficiency of 42.32% demonstrate that the photon energy can be utilized by the heterostructure efficiently. Furthermore, the absorption coefficient in the visible range can be significantly increased under tensile strain. Hence, there are reasons to believe that SnC/PtSe2 heterostructure has tremendous potential for application in the field of photocatalytic water decomposition.  相似文献   

8.
By means of density functional theory computations, we predicted two novel two-dimensional (2D) nanomaterials, namely P2X (X=C, Si) monolayers with pentagonal configurations. Their structures, stabilities, intrinsic electronic, and optical properties as well as the effect of external strain to the electronic properties have been systematically examined. Our computations showed that these P2C and P2Si monolayers have rather high thermodynamic, kinetic, and thermal stabilities, and are indirect semiconductors with wide bandgaps (2.76 eV and 2.69 eV, respectively) which can be tuned by an external strain. These monolayers exhibit high absorptions in the UV region, but behave as almost transparent layers for visible light in the electromagnetic spectrum. Their high stabilities and exceptional electronic and optical properties suggest them as promising candidates for future applications in UV-light shielding and antireflection layers in solar cells.  相似文献   

9.
Nan Lu 《中国物理 B》2022,31(4):47201-047201
We study the thermal and electronic transport properties as well as the thermoelectric (TE) performance of three two-dimensional (2D) XI2 (X=Ge, Sn, Pb) bilayers using density functional theory and Boltzmann transport theory. We compared the lattice thermal conductivity, electrical conductivity, Seebeck coefficient, and dimensionless figure of merit (ZT) for the XI2 monolayers and bilayers. Our results show that the lattice thermal conductivity at room temperature for the bilayers is as low as ~1.1 W·m-1·K-1-1.7 W·m-1·K-1, which is about 1.6 times as large as the monolayers for all the three materials. Electronic structure calculations show that all the XI2 bilayers are indirect-gap semiconductors with the band gap values between 1.84 eV and 1.96 eV at PBE level, which is similar as the corresponding monolayers. The calculated results of ZT show that the bilayer structures display much less direction-dependent TE efficiency and have much larger n-type ZT values compared with the monolayers. The dramatic difference between the monolayer and bilayer indicates that the inter-layer interaction plays an important role in the TE performance of XI2, which provides the tunability on their TE characteristics.  相似文献   

10.
Tungsten (W)-doped SnO2 is investigated by first-principle calculations, with a view to understand the effect of doping on the lattice structure, thermal stability, conductivity, and optical transparency. Due to the slight difference in ionic radius as well as high thermal and chemical compatibility between the native element and the heterogeneous dopant, the doped system changes a little with different deviations in the lattice constant from Vegard’s law, and good thermal stability is observed as the doping level reaches x = 0.125 in Sn1-x W x O2 compounds. Nevertheless, the large disparities in electron configuration and electronegativity between W and Sn atoms will dramatically modify the electronic structure and charge distribution of W-doped SnO2, leading to a remarkable enhancement of conductivity, electron excitation in the low energy region, and the consequent optical properties, while the visible transparency of Sn1-x W x O2 is still preserved. Particularly, it is found that the optimal photoelectric properties of W-doped SnO2 may be achieved at x = 0.03. These observations are consistent with the experimental results available on the structural, thermal, electronic, and optical properties of Sn1-x W x O2, thus presenting a practical way of tailoring the physical behaviors of SnO2 through the doping technique.  相似文献   

11.
ABSTRACT

The effects of biaxial strain on the electronic structure and the elastic and optical properties of monolayer CaI2 were studied using first-principles calculations. The two-dimensional (2D) equation of state for monolayer CaI2 as fit in a relative area of 80–120% is more accurate. The band gap can be tuned under strain and reached a maximum at a tensile strain of 4%. Under compressive strains, the absorption spectrum showed a significant red shift at higher strains. The static reflectance and static refractive index decreased in the strain range of ?10% to 10%.  相似文献   

12.
Abstract

In this study, the elastic, electronic, optical and thermoelectric properties of CaTiO3 perovskite oxide have been investigated using first-principles calculations. The generalised gradient approximation (GGA) has been employed for evaluating structural and elastic properties, while the modified Becke Johnson functional is used for studying the optical response of this compound. In addition to ground state physical properties, we also investigate the effects of pressure (0, 30, 60, 90 and 120 GPa) on the electronic structure of CaTiO3. The application of pressure from 0 to 90 GPa shows that the indirect band gap (Γ-M) of CaTiO3 increases with increasing pressure and at 120 GPa it spontaneously decreases transforming cubic CaTiO3 to a direct (Γ-Γ) band gap material. The complex dielectric function and some optical parameters are also investigated under the application of pressures. All the calculated optical properties have been found to exhibit a shift to the higher energies with the increase of applied pressure suggesting potential optoelectronic device applications of CaTiO3. The thermoelectric properties of CaTiO3 have been computed at 0 GPa in terms of electrical conductivity, thermal conductivity and Seebeck coefficient.  相似文献   

13.
First principles calculations were performed to investigate the electronic, optical and thermoelectric properties of Zintl orthorhombic phase AE3AlAs3 (AE?=?Sr, Ba) compounds using the full potential linearized augmented plane wave method. The exchange-correlation potential is treated with the generalized gradient approximation (GGA) and modified Becke-Johnson potential (TB-mBJ) to improve the electronic structure calculations. These two compounds are semiconductors have direct band gaps. The optical transitions are investigated via dielectric function along with other related optical constants such as refractive index and absorption coefficient. Thermoelectric properties are examined using the combination of electronic structure and Boltzmann transport theory. In detail, the calculated results of Seebeck coefficient, electrical and thermal conductivity, figure of merit and power factor are reported as a function of temperature.  相似文献   

14.
15.
《Physics letters. A》2019,383(28):125864
The electronic structure and thermoelectric properties of monolayer Bi2Te2Se were studied by density functional theory and semi-classical Boltzmann transport equation. The band gap with TB-mBJ can be improved for monolayer Bi2Te2Se. Monolayer Bi2Te2Se have ultra-low thermal conductivity comparing with other well-known two-dimensional materials. The monolayer Bi2Te2Se can improve electrical conductivities. ZT increases with increasing temperature for monolayer Bi2Te2Se. Comparing to GGA, TB-mBJ has larger ZT value in p-type doping. Monolayer Bi2Te2Se have larger ZT comparing with other well-known two-dimensional materials. Our calculated results show that our calculation greatly underestimates ZT value, therefore, monolayer Bi2Te2Se should have a higher ZT value.  相似文献   

16.
D. M. Hoat 《哲学杂志》2019,99(6):736-751
The structural, electronic, optical properties of GaS in bulk and monolayer forms have been studied by means of full-potential linearised augmented plane wave calculations within framework of the density functional theory. Generalised gradient approximation and Tran–Blaha modified Becke–Johnson exchange potential (mBJ) were employed for the treatment of exchange-correlation effect in calculations. Our calculated lattice parameters are in good agreement with previous theoretical results and available experimental data. The negative formation enthalpy and cohesive energy indicate that both bulk and monolayer GaS can be synthesised and stabilised experimentally. Our electronic results show that the band gap of GaS monolayer is higher than that of bulk counterpart and strong hybridisation between electronic states of constituent atoms is observed in both cases. The optical properties such as reflectivity, absorption coefficient, refractive index and optical conductivity were derived from calculated complex dielectric function for wide energy range up to 35?eV. Finally, the thermoelectric properties of GaS bulk and monolayer also were calculated using semi-classical Boltzmann theory within the constant relaxation time approximation for investigating their applicability in thermoelectric devices.  相似文献   

17.
In this paper, by using of the first principles calculations in the framework of the density functional theory, we systematically investigated the structure, stability, electronic and optical properties of a novel two-dimensional pentagonal monolayer semiconductors namely penta-SiC5 monolayer. Comparing elemental silicon, diamond, and previously reported 2D carbon allotropes, our calculation shows that the predicted penta-SiC5 monolayer has a metastable nature. The calculated results indicate that the predicted monolayer is an indirect semiconductor with a wide band gap of about 2.82 eV by using Heyd–Scuseria–Ernzerhof (HSE06) hybrid functional level of theory which can be effectively tuned by external biaxial strains. The obtained exceptional electronic properties suggest penta-SiC5 monolayer as promising candidates for application in new electronic devices in nano scale.  相似文献   

18.
In this study, we employed the first-principles calculation to investigate the structural, electronic and transport properties of 1T-HfSe2 and 1T-PtSe2 transition metal dichalcogenides, and further explain why they share the same 1T (octahedral) layered structure but exhibit very different electronic and transport properties. There are two underlying concepts: the degree of interlayer bond ionicity and the number of 5d valence electrons of transition metal. The high degree of Hf-Se bond ionicity not only gives rise to the indirect energy gap of HfSe2 bulk and thin films, but also results in the weak Se-Se vdW interlayer coupling to further restrict the electron transport only within a HfSe2 layer. On the other hand, the modulation of metallic/semiconducting property of PtSe2 bulk and thin films can be understood by the significant vdW interlayer coupling, which induces charge redistribution of Se atom and allows electrons to transport within a PtSe2 layer as well as cross neighboring layers. Finally, our transport calculation for 1T-HfSe2/1T-PtSe2 bulks and monolayers suggests the great electron transport within Hf-Se/Pt-Se layer but suppresses/allows electron from neighboring layers. The robust two-dimensional characteristic of 1T-HfSe2 and the metal-to-semiconductor transition of 1T-PtSe2 may provide more knowledge for future application in nanoelectronic and optoelectronic devices.  相似文献   

19.
Using first principles density functional theory, we predict a monolayer B2Si structure with space group Pmm2 in the present work. This structure is confirmed to be dynamically stable. Based on the plane wave pseudopotential approach, the charge density, electron localization function, density of states, energy band, phonon property and thermal conductivity of Pmm2-B2Si are systematically studied. It is interesting that the sp2 hybridization and coordination bond of Si are found in Pmm2-B2Si, which is the most important factor for its structural stability. The density of states and energy band analysis reveals that Pmm2-B2Si is metallic because of the partial occupied Si 3pz and B 2pz states. Moreover, the acoustic-optical coupling is important for phonon transport in Pmm2-B2Si, and the contribution of optical modes to the lattice thermal conductivity along the [100] and [010] directions is 13% and 12%, respectively. This study gives a fundamental understanding of the structural, electronic and phonon properties in Pmm2-B2Si.  相似文献   

20.
The magnetic properties, electronic structure, and optical properties of the filled skutterudite BaFe4Sb12 are calculated by the first-principles full-potential linearized augmented plane wave (FPLAPW) plus local orbital method. It is found that the local spin density approximation (LSDA) method appears more accurate than the generalized gradient approximation (GGA) method in calculating the electronic structures and optical properties of this compound. Furthermore, our calculated lattice constant and spin magnetic moments with the LSDA method are in overall better agreement with experiment. In contrast with recent experiment, our calculations are in good agreement with experimental reflectivity spectra and optical conductivity spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号