首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The chemical composition of the essential oil of Haussknechtia elymaitica Boiss. was investigated by capillary GC and GC/MS for the first time. Twelve components were identified which accounting for 99.7% of the oil composition. The major compounds were trans-asarone (59.9%), trans-methyl isoeugenol (22.4%), α-zingiberene (7.96%), β-sesquiphellandrene (4.7%) and β-bisabolene (4.3%). The first three compounds considered as the main components of the essential oil were isolated and characterised by spectroscopic techniques.  相似文献   

2.
战琨友  王超  徐坤  尹洪宗 《色谱》2008,26(6):692-696
用超临界CO2萃取生姜根茎中的姜油树脂,并用气相色谱-质谱联用技术对其进行了成分分析。从姜油树脂中分析出77种化合物,其中挥发油成分50种,主要是α-姜烯(22.29%)、 β-倍半水芹烯(8.58%)、α-法尼烯(3.93%)、 β-没药烯(3.87%)和α-姜黄烯(2.63%)等倍半萜类化合物;姜辣素成分27种,主要成分为6-姜酚(9.38%)、6-姜烯酚(7.59%)和分析过程中由姜酚类或姜烯酚类化合物受热分解而形成的姜油酮(9.24%)。在姜辣素成分中,6-异姜酚、(Z)-10-异姜烯酚和(E)-10-异姜烯酚3种化合物是新发现的未见报道的化合物。实验中对这3种新化合物进行了质谱裂解分析。  相似文献   

3.
The anti-atherogenic potentials of total ginger (Zingiber officinale) extract (TGE) or curcuminoids extracted from turmeric (Curcuma longa), members of family Zingiberaceae, were compared in hypercholesterolaemia. Rabbits were fed either normal or atherogenic diet. The rabbits on atherogenic diet received treatments with TGE or curcumenoids and placebo concurrently for 6 weeks (n = 6). The anti-atherogenic effects of curcuminoids and ginger are mediated via multiple mechanisms. This effect was correlated with their ability to lower cholesteryl ester transfer protein activity. Ginger extract exerted preferential effects on plasma lipids, reverse cholesterol transport, cholesterol synthesis and inflammatory status. Curcuminoids, however, showed superior antioxidant activity.  相似文献   

4.
This study reports the chemical composition, antimicrobial activity and antioxidant properties of Psammogeton canescens essential oil (EO) and its main compounds. The EO was obtained from the aerial parts of P. canescens by hydrodistillation and analysed by using GC/MS. The main constituent was β-bisabolene (25%), followed by α-pinene (20%), apiole (15.34%), γ-terpinene (7.34%), p-cymene (5.35%), β-pinene (5.41%), camphene (5.12%), dill apiole (5%), myrcene (4.54%), colchicine (0.56), sylvestrene (0.56%), β-caryophyllene (0.45%), caryophyllene oxide (0.43%), (Z)-β-farnesene (0.32%), cembrene (0.21%), folic acid (0.21%), germacrene D (0.14) and β-sesquiphellandrene (0.13). β-Bisabolene exhibited strong antioxidant activity (14 ± 0.8 μg/mL). The EO of P. canescens was particularly active against Candida albicans and Escherichia coli, with the lowest minimum inhibitory concentration and minimum bactericidal/fungicidal concentration values. In conclusion, these results support the use of the EO and its main compounds for their antioxidant properties and antimicrobial activity.  相似文献   

5.
Introduction: A novel analytical method using fast gas chromatography combined with surface acoustic wave sensor (GC-SAW) was developed for rapid determination of the pharmacological volatiles of turmeric (Curcuma longa L.). Methods: The volatile compounds in 20 turmeric samples, collected from different parts and different origins, were assessed by the fast GC-SAW. In addition, gas chromatography–mass spectrometry (GC-MS) was employed to confirm the chemical composition of the main volatiles. The digital fingerprint of turmeric was established and analysed by principal component analysis and cluster analysis. Results: Curcumene (9.1%), β-sesquiphellandrene (5.1%) and ar-turmerone (69.63%) were confirmed as the main pharmacological volatiles of turmeric. The content of ar-turmerone in lateral rhizome turmeric was significantly higher than that of top rhizome and ungrouped turmeric. The contents of curcumene and β-sesquiphellandrene in top rhizome turmeric were higher than those in lateral and ungrouped turmeric. The 20 turmeric samples were divided into four categories, which reflected the quality characteristics of the turmeric from different parts and origins. Conclusion: The GC-SAW method can rapidly and accurately detect pharmacologically volatiles of turmeric, and it can be used in the quality control of turmeric.  相似文献   

6.
The sesquiterpenoids are one of major groups of antioxidants in Curcuma besides curcuminoids. However, the real substances contributing to the antioxidant activity are still unknown. In this paper, the antioxidant activity of sesquiterpenoids in four species and two essential oils from Curcuma genus was determined and compared based on TLC separation and DPPH bioautography assay. Their antioxidant capacities were quantitatively evaluated using densitometry with detection at 530 nm (λ(reference )= 800 nm) using vitamin C as reference. The results showed that Curcuma longa rhizomes had the highest antioxidant capacity while C. phaeocaulis presented the lowest one among the four species of Curcuma. Moreover, essential oil of C. wenyujin showed higher antioxidant potential than that of C. longa. The main TLC bands with antioxidant activity of the four species of Curcuma were collected and characterized using GC-MS, and thus curzerene, furanodiene, α-turmerone, β-turmerone and β-sesquiphellandrene were determined as major sesquiterpenoids with antioxidant activity in Curcuma.  相似文献   

7.
Anti-quorum sensing activity of essential oils from Colombian plants   总被引:1,自引:0,他引:1  
Essential oils from Colombian plants were characterised by GC-MS, and assayed for anti-quorum sensing activity in bacteria sensor strains. Two major chemotypes were found for Lippia alba, the limonene-carvone and the citral (geranial-neral). For other species, the main components included α-pinene (Ocotea sp.), β-pinene (Swinglea glutinosa), cineol (Elettaria cardamomun), α-zingiberene (Zingiber officinale) and pulegone (Minthostachys mollis). Several essential oils presented promising inhibitory properties for the short chain AHL quorum sensing (QS) system, in Escherichia coli containing the biosensor plasmid pJBA132, in particular Lippia alba. Moderate activity as anti-QS using the same plasmid, were also found for selected constituents of essential oils studied here, such as citral, carvone and α-pinene, although solely at the highest tested concentration (250?μg?mL(-1)). Only citral presented some activity for the long chain AHL QS system, in Pseudomonas putida containing the plasmid pRK-C12. In short, essential oils from Colombian flora have promising properties as QS modulators.  相似文献   

8.
The chemical composition of essential oils isolated from the aerial parts of Heracleum lehmannianum, Prangos pabularia, Pseudohandelia umbellifera and Pulicaria salviifolia, all of them growing in Uzbekistan, were determined by GC-MS analysis. The main components of the oil from H. lehmannianum were α-phellandrene (10.5%), 1-butanol (9.0%), δ-cadinene (6.2%), α-cadinol (5.7%), τ-muurolol (3.1%), 4-terpineol (2.4%) and α-muurolene (2.6%), while cis-allo-ocimene (17.6%), δ-3-carene (14.2%), limonene (7.6%), 2,4,6-trimethylbenzaldehyde (6.8%), α-terpinolene (6.1%), β-ocimene (4.3%), α-ocimene (4.2%), α-phellandrene (4.2%) were the major oil components in P. pabularia, and borneol (4.4%), t-cadinol (4.1%), α-humulene oxide (4.0%), caryophyllene oxide (3.6%), bornyl chloride (3.1%), β-pinene (2.9%) in P. umbellifera. The essential oil of P. salviifolia had a much more complex composition which was dominated by 4-terpineol (13.4%), α-cadinol (5.7%), 6-epi-shyobunol (5.2%), γ-terpinene (5.0%), δ-cadinene (4.4%), α-terpinene (3.5%).  相似文献   

9.
The root tuber and rhizome of Curcuma longa L., abbreviated, respectively, as RCL and RHCL, are used as different medicines in China. In this work, volatile oils were extracted from RCL and RHCL. Then, gas chromatography–mass spectrometry (GC–MS) was used for RCL and RHCL volatile oils analysis, and 45 compounds were identified. The dominant constituents both in volatile oils of RCL and RHCL were turmerone, (−)-zingiberene, and β-turmerone, which covered more than 60% of the total area. The chromatographic fingerprint similarities between RCL and RHCL were not less than 0.943, indicating that their main chemical compositions were similar. However, there were also some compounds that were varied in RCL and RHCL. Based on the peak area ratio of 45 compounds, the RCL and RHCL samples were separated into principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA). Then, 20 compounds with a variable importance for the projection (VIP) value of more than 1 were the high potential contributors for RCL and RHCL differences. Furthermore, ferric ion-reducing antioxidant power (FRAP) assay results demonstrated that the volatile oils of RCL and RHCL had antioxidant activities. This study provided the material basis for the research of volatile components in RCL and RHCL and contributed to their further pharmacological research and quality control.  相似文献   

10.
The chemical compositions of the essential oil and of the non-polar extracts (petroleum ether, dichloromethane) of the aerial parts (flowers, leaves and stems) of Salvia argentea L. were determined by GC-FID and gas chromatography–mass spectrometry analysis. 14-Hydroxy-α-humulene (40.1%) was recognised as the main constituents of the essential oil of S. argentea, together with 1,3,8-p-menthatriene (12.1%), globulol (7.4%) and β-sesquiphellandrene (5.8%). Tritriacontane (9.9% and 14.1%), heptacosane (8.4% and 10.5%), hentriacontane (8.3% and 10.9%), tetradecanal (8.4% and 10.2%) and methyldotriacontane (7.9% and 7.6%) were recognised as the main constituents of the extracts in petroleum ether and dichloromethane, respectively, whereas methyl linolenate (36.6% and 13.5%) and methyl myristoleate (10.5% and 18.5%) were recognised as the main constituents of the methylated extracts.  相似文献   

11.
The essential oil constituents of the leaves of Jasminum subtriplinerve (Oleaceae) and Vitex quinata (Verbanaceae) cultivated in Vietnam were analysed by gas chromatography – flame ionisation detector (GC–FID) and gas chromatography – mass spectrometry (GC–MS) techniques. The main constituents identified in J. subtriplinerve were mainly oxygenated monoterpenes represented by linalool (44.2%), α-terpineol (15.5%), geraniol (19.4%) and cis-linalool oxide (8.8%). The quantitative significant components of V. quinata were terpene hydrocarbons comprising of β-pinene (30.1%), β-caryophyllene (26.9%) and β-elemene (7.4%). The chemical compositions of the essential oils are being reported for the first time.  相似文献   

12.
采用固相微萃取(SPME)和加速溶剂萃取(ASE)两种前处理方法从青山绿水茶叶(也叫苦丁茶)中提取挥发性成分,用气相色谱-质谱法(GC-MS)定性。实验结果表明:两种前处理方法共检测出91种成分,SPME检出49种,ASE检出56种,共同组分14种。青山绿水茶叶的挥发性成分主要成分有β-月桂烯、3,3,5-三甲基-1,5-庚二烯、L-柠檬烯、α-罗勒烯、β-罗勒烯、β-蒎烯、2-甲基安息香醛和5-羟甲基糠醛等物质。这两种提取方法各具优势,共同应用可以起到取长补短的作用。  相似文献   

13.
Volatile oils from flowers and leaves of C. creticus L. and C. salviifolius L. were extracted by two extraction methods; namely, hydrodistillation and solid-phase micro-extraction (SPME). The chemical composition of essential oils was analyzed by GC and GC–MS. The volatile extracted from leaves and flowers of C. criticus using SPME was dominated by monoterpenes and sesquiterpenes hydrocarbon with α-pinene, camphene and α-cubebene as major components. In hydrodistillation, the oil extracted from leaves was dominated by oxygenated diterpenes and diterpenes hydrocarbon with manoyl oxide and sclarene as major components, whereas, the oil extracted from flowers was dominated by oxygenated diterpenes and diterpenes hydrocarbon with manoyl oxide and abietatriene as major components. The volatile from flowers and leaves of C. salviifolius obtained by SPME were dominated by monoterpenes and sesquiterpenes with δ-3-carene, α-pinene, β-pinene, and E-caryophyllene as major constituents. On the other hand, the oils from flowers and leaves of C. salviifolius obtained by hydrodistillation were dominated by oxygenated diterpenes, diterpenes hydrocarbon and esters with dehydro abietol, abietol, manoyl oxide and methyl octadecenoate as major components. In the leaves, the major components of the oil were manoyl oxide, E-ethyl cinnamate, and Z-ethyl cinnamate. These oils showed weak antioxidant activity when compared to the positive controls α-tocopherol, ascorbic acid, and EDTA, while the crude extracts aq. MeOH, butanol, and water showed good antioxidant activity. Discriminating between the studied plants based on the extraction method was also possible upon applying Principle component analysis (PCA) to the obtained GC–MS data.  相似文献   

14.
This study reports the chemical composition, antioxidant and anti-inflammatory properties of Anethum graveolens essential oil and its main compounds. The essential oil was obtained from the aerial parts of the plant by hydrodistillation and analysed by using GC/MS. α-Phellandrene (19.12%), limonene (26.34%), dill ether (15.23%), sabinene (11.34%), α-pinene (2%), n-tetracosane (1.54%), neophytadiene (1.43%), n-docosane (1.04), n-tricosane (1%), n-nonadecane (1%), n-eicosane (0.78%), n-heneicosane (0.67%), β-myrcene (0.23%) and α-tujene (0.21%) were found to be the major constituents of the oil. A. graveolens oil exhibit a higher activity in each antioxidant system with a special attention for β-carotene bleaching test (IC50: 15.3 μg/mL) and reducing power (EC50: 11.24 μg/mL). The TLC-bioautography screening and fractionation resulted in the separation of the main antioxidant compounds, which were identified as limonene (45%) and sabinene (32%). The essential oil and its main compounds exhibited a potent NO-scavenging effect and inhibited the expression of inducible NO synthase.  相似文献   

15.
《Analytical letters》2012,45(3):422-432
The composition of the essential oil isolated from the fresh and dry leaves of Ducrosia flabellifolia Boiss. (Apiaceae) was determined by gas chromatography and gas chromatography–mass spectrometry using hydrodistillation and solid phase microextraction (SPME). The hydrodistilled oil of the fresh leaves yielded 38 components, accounting for 98.67% of the total oil content, while thirty components were detected from the fresh leaves by solid phase microextraction (94.85%). Fifty-one and 36 components were identified in the hydrodistilled and SPME oils of the dried leaves amounting to 98.78% and 94.52%, respectively. A total of 25 components accounting for 97.24% of the total composition were characterized in the SPME oil of the fresh flowers. Aliphatic compounds predominated in the volatile fractions of the leaves and flowers of both methods with n-decanol, n-decanal, and dodecanal as the main constituents. The α- and ß-pinene were the major monoterpenoids in the oils. The hydrodistilled oil was screened for its antimicrobial and antioxidant activities. The minimal inhibitory concentration of the volatile oil was determined using a microdilution method in 96 well plates against a panel of gram (+), gram (?) bacteria, and fungi. Overnight cultures of reference strains of Candida albicans, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus were used as test microorganisms. The oil exhibited the best activity against C. albicans (MIC 234 µg/mL) and S. aureus (MIC 234 µg/mL) whereas weak activity was detected against E. coli and P. aeruginosa. No antioxidant activity could be detected.  相似文献   

16.
《Analytical letters》2012,45(15):2297-2310
The volatile organic compounds from flowers, leaves, and stems of Dendranthema indicum var. aromaticum, obtained through a static headspace technique, were analyzed by gas chromatography-mass spectrometry (GC-MS) and accurate mass measurement. The qualitative approach, comprising accurate mass measurement, retention index, and mass spectral search, was utilized to identify compounds. A total of 162 components were identified, representing 97.55–98.72% of the volatiles of individual samples. The principal chemical components in flowers were bornyl acetate (15.40%), α-phellandrene (14.18%), p-cymene (9.64%), camphor (9.54%), β-linalool (8.61%), and α-thujone (7.06%). In leaves, the main components were p-cymene (20.42%), bornyl acetate (20.41%), α-phellandrene (13.67%), and β-linalool (5.46%). As for stems, trans-β-farnesene (17.95%), germacrene D (12.89%), β-phellandrene (12.70%), β-caryophyllene (10.18%), and bicyclogermacrene (8.01%) were the dominant volatile compounds. Comparative studies on the volatiles from various species of genus Dendranthema indicated that Dendranthema indicum var. aromaticum contains significantly more aroma compounds than its morphologically similar species.  相似文献   

17.
The chemical composition of the essential oil from the aerial parts of three Lamiaceae species from Uzbekistan was investigated by GC-MS analysis. β-Linalool (26.6%), α-terpineol (10.0%), coumarin (8.9%) and 4,5,7,7α-tetrahydro-4,4,7α-trimethyl-2(6H)-benzofuranone (5.4%) resulted as the main components of Ajuga turkestanica essential oil, while camphene (17.1%), 1,8-cineole (15.9%), β-cymene (7.9%) and limonene (7.4%) in Phlomis regelii. The essential oil of Thymus seravschanicus was dominated by thymol (37.5%), phellandral (26.0%), τ-terpinene (6.6%) and β-cymene (5.2%). The essential oils had considerable antimicrobial activity against different bacterial strains and fungi. Among the tested samples of essential oils, P. regelii essential oil has the significant antioxidant activity with IC50 value of 117.8 ± 8.02 μg/mL.  相似文献   

18.
《Analytical letters》2012,45(8):1213-1228
Composition-Activity Relationship (CAR) modeling is a novel approach to evaluate the quality and identify active components of herbal medicine. In this study, Grid Search Method (GSM) and Heuristics algorithms, particularly Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), were adopted to determine the optimal parameters automatically. Then, support vector regression (SVR) combined with a linear kernel function or a radial basis kernel function (RBF) and back propagation artificial neural networks (BPANN) were employed to construct the model that correlated the main chemical components with the cytotoxicity of the essential oil from Curcuma longa L., respectively. Considering the robustness and predictive ability, the ν-SVR-RBF-PSO model had the best performance in various tests performed in this paper. Nine components were then identified to have significant cytotoxicity based on the superior model and Mean Impact Value (MIV) analysis. An optimal model can therefore be a useful tool to predict the bioactivity for quality evaluation and active components identification of herbal medicine.  相似文献   

19.
The epidermal growth factor receptors (EGFRs) are significant targets for screening active compounds. In this work, an analytical method was established for rapid screening, separation, and identification of EGFRs antagonists from Curcuma longa. Human embryonic kidney 293 cells with a steadily high expression of EGFRs were used to prepare the cell membrane stationary phase in a cell membrane chromatography model for screening active compounds. Separation and identification of the retention chromatographic peaks was achieved by HPLC–MS. The active sites, docking extents and inhibitory effects of the active compounds were also demonstrated. The screening result found that ar‐turmerone, curcumin, demethoxycurcumin, and bisdemethoxycurcumin from Curcuma longa could be active components in a similar manner to gefitinib. Biological trials showed that all of four compounds can inhibit EGFRs protein secretion and cell growth in a dose‐dependent manner, and downregulate the phosphorylation of EGFRs. This analytical method demonstrated fast and effective characteristics for screening, separation and identification of the active compounds from a complex system and should be useful for drug discovery with natural medicinal herbs.  相似文献   

20.

A simple and rapid thin layer chromatographic (TLC)-image analysis method was developed for simultaneous quantification of three curcuminoids; curcumin (CUR), desmethoxycurcumin (DES) and bisdesmethoxycurcumin (BIS), in Curcuma longa (turmeric). Chromatographic separation of the curcuminoids was achieved on silica gel 60 F254 TLC plates, using chloroform–hexane–methanol (1:1:0.1, v/v/v) as the mobile phase. Image analysis of the scanned TLC plate was performed by Photoshop 7.0 to quantify the amount of each curcuminoid. The method was validated and found to be accurate, reliable and convenient for the analysis of CUR, DES and BIS in turmeric.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号