首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The investigation of chemical constituents from the whole plants Piper pleiocarpum Chang ex Tseng resulted in the isolation of one new dineolignan, pleiocarpumlignan A (1), along with one known benzoate derivative, trans-2,3-diacetoxy-1-[(benzoy1oxy)methyl]-cyclohexa-4,6-diene (2), and two known neolignans (34) as (±)-trans-dehydrodiisoeugenol (3), (7R,8R,3′S)-△8′-3′,6′-dihydro-3′-methoxy-3,4-methylenedioxy-6′-oxo-8,3′,7,O,4′-lignan (4). Their structures were elucidated through extensive spectroscopic analyses including 1D, 2D NMR, HR-ESI-MS, and by comparison with the literature. All compounds (14) were firstly isolated from Piper pleiocarpum Chang ex Tseng. The 13C NMR spectra of 2 were completely assigned for the first time. Cytotoxic activities of these isolated compounds against five human cancer cell lines (including A-549, SMMC-7721, HL-60, MCF-7, and SW-480) were evaluated.  相似文献   

2.
Chemical investigation of the ethanol extract of the roots of Cudrania cochinchinensis led to the isolation of a new flavonoid, (6S,12S,13R)-1-methoxy cyanomaclurin (1), together with seven known compounds, 1,3,5-trihydroxy-4-(3′-hydroxy-3′-methylbutyl)xanthone (2), 1,3,6-trihydroxy-4-prenylxanthone (3), 1,3,6,7-tetrahydroxyxanthone (4), 1,3,5,6-tetrahydroxyxanthone (5), 1,3,6-trihydroxy-5-methoxyxanthone (6), resveratrol (7) and oxyresveratrol (8). The structure of compound 1 was elucidated on the basis of 1D and 2D NMR spectra and the HR-ESI-MS data. The absolute stereochemistry was deduced via Rh2(OCOCF3)4-induced CD and NOESY spectra.  相似文献   

3.
A new isoflavone, 4′-prenyloxyvigvexin A (1) and a new pterocarpan, (6aR,11aR)-3,8-dimethoxybitucarpin B (2) were isolated from the leaves of Lonchocarpus bussei and the stem bark of Lonchocarpus eriocalyx, respectively. The extract of L. bussei also gave four known isoflavones, maximaisoflavone H, 7,2′-dimethoxy-3′,4′-methylenedioxyisoflavone, 6,7,3′-trimethoxy-4′,5′-methylenedioxyisoflavone, durmillone; a chalcone, 4-hydroxylonchocarpin; a geranylated phenylpropanol, colenemol; and two known pterocarpans, (6aR,11aR)-maackiain and (6aR,11aR)-edunol. (6aR,11aR)-Edunol was also isolated from the stem bark of L. eriocalyx. The structures of the isolated compounds were elucidated by spectroscopy. The cytotoxicity of the compounds was tested by resazurin assay using drug-sensitive and multidrug-resistant cancer cell lines. Significant antiproliferative effects with IC50 values below 10 μM were observed for the isoflavones 6,7,3′-trimethoxy-4′,5′-methylenedioxyisoflavone and durmillone against leukemia CCRF-CEM cells; for the chalcone, 4-hydroxylonchocarpin and durmillone against its resistant counterpart CEM/ADR5000 cells; as well as for durmillone against the resistant breast adenocarcinoma MDA-MB231/BCRP cells and resistant gliobastoma U87MG.ΔEGFR cells.  相似文献   

4.
Five substituted-2,2′-bipyridine ligands L, (4-(p-methylphenyl)-6-phenyl-2,2′-bipyridine (L1), 4-(p-bromophenyl)-6-(p-bromophenyl)-2,2′-bipyridine (L2), 4-(p-bromophenyl)-6-phenyl-2,2′-bipyridine (L3), 4-phenyl-6-(p-bromophenyl)-2,2′-bipyridine (L4), and 4-(p-fluorophenyl)-6-(p-fluorophenyl)-2,2′-bipyridine (L5) were synthesized by stepwise formation. Reaction of cis-[RuCl2(bpy)2]?2H2O or cis-[RuCl2(phen)2]?2H2O and the substituted-2,2′-bipyridine ligands in the presence of KPF6 afforded the corresponding cationic polypyridine-ruthenium complexes of the type [(bpy)2Ru(L)](PF6)2 (bpy = 2,2′-bipyridine, 15) or [(phen)2Ru(L)](PF6)2 (phen = 1,10-phenanthroline, 610), respectively. All complexes have been spectroscopically characterized by UV–vis, luminescence, and electrogenerated chemiluminescence. The structures of 1?CH3COCH3, 3?CH3COCH3, 5?2CH3COCH3, 6, 8, 9, and 10 have been determined by single-crystal X-ray diffraction.  相似文献   

5.
Chemical constituents of crude ethyl acetate extract of roots of Akschindlium godefroyanum (Kuntze) H. Ohashi were investigated and seven flavonoids were isolated. Their structures were identified based on spectroscopic methods as well as by comparison with spectral data reported in the literature as six flavanonols and a flavonol including 7,4′-dihydroxy-5,3′-dimethoxyflavanonol (1), neophellamuretin (2), taxifolin (3), erycibenin D (4), geraldol (5), fustin (6) and garbanzol (7). Compounds 2, 4 and 7 were found in the genus Akschindlium for the first time. Compounds 3, 5 and 6 appeared to have free radical scavenging activities using DPPH assay with IC50 of 21, 40 and 15 μg/mL, respectively.  相似文献   

6.
Two new xanthones, designated garcimangosxanthone F (1) and garcimangosxanthone G (2), were isolated from the EtOAc-soluble fraction of ethanolic extract from the pericarp of Garcinia mangostana. Their structures were established as 1,6,7-trihydroxy-5-(3-methylbut-2-enyl)-8-(3-hydroxy-3-methylbutyl)-6′,6′-dimethylpyrano[2′,3′:3,2]xanthone and 1,6,7-trihydroxy-5-(3-methylbut-2-enyl)-8-(3-hydroxy-3-methylbutyl)-6′,6′-dimethyl-4′,5′-dihydropyrano[2′,3′:3,2]xanthone, respectively, on the basis of their 1D, 2D NMR and MS data interpretation.  相似文献   

7.
Nucleosides and Nucleotide. Part 15. Synthesis of Deoxyribonucleoside Monophosphates and Triphosphates with 2(1H)-Pyrimidinone, 2(1H)-Pyridinone and 4-Amino-2(1H)-pyridinone as the Bases The phosphorylation of the modified nucleosides 1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyrimidinone (Md, 4 ), 4-amino-1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyridinone (Zd, 6 ) and the synthesis of 1–2′-deoxy-β-D -ribofuranosyl-2(1 H)-pyrimidinone-5′-O-triphosphate (pppMd, 1 ), 1-(2′-deoxy-β-D ribofuranosyl)-2(1 H)-pyridinone-5′-O-triphosphate (pppIId, 2 ), and 4-amino-1-(2′-deoxy-βD -ribofuranosyl)-2(1 H)-pyridinone-5′-O-triphosphate (pppZd, 3 ) are described. The nucleoside-5′-monophosphates pMd (5) and pZd (7) were obtained by selective phosphorylation of Md (4) and Zd (6) , respectively, using phosphorylchloride in triethyl phosphate or in acetonitril. The reaction of pMd (5) pII d (8) or pZd (7) with morpholine in the presence of DCC led to the phosphoric amides 9, 10 and 11 , respectively, which were converted with tributylammonium pyrophosphate in dried dimethylsulfoxide to the nucleoside-5′triphosphates 1, 2 and 3 , respectively.  相似文献   

8.
In the present study, two new xanthones, (5′S,8′S)-1,3,5,8-tetrahydroxyxanthone(7→2′)-1,3,5,8-tetrahydroxy-5′,6′,7′,8′-tetrahydroxanthone (1), 5-hydroxy-3,4,6-trimethoxyxanthone-1-O-β-D-glucopyranoside (2), and eight known xanthones (3–10) were isolated from the whole plants of Gentianella acuta. Their structures were identified by the spectroscopic analyses (HR-ESI-MS, and 1D and 2D NMR). Meanwhile, cell-protective effects against H2O2-induced H9c2 cardiomyocyte injury and cytotoxic activities of compounds 1–10 were also determined.  相似文献   

9.
3′‐Epilutein (=(all‐E,3R,3′S,6′R)‐4′,5′‐didehydro‐5′,6′‐dihydro‐β,β‐carotene‐3,3′‐diol; 1 ), isolated from the flowers of Caltha palustris, was submitted to both thermal isomerization and I2‐catalyzed photoisomerization. The structures of the main products (9Z)‐ 1 , (9′Z)‐ 1 , (13Z)‐ 1 , (13′Z)‐ 1 , (15Z)‐ 1 , and (9Z,9′Z)‐ 1 were determined based on UV/VIS, CD, 1H‐NMR, and MS data.  相似文献   

10.
Aervalanata possesses various useful medicinal and pharmaceutical activities. Phytochemical investigation of the plant has now led to the isolation of a new 2α,3α,15,16,19-pentahydroxy pimar-8(14)-ene diterpenoid (1) together with 12 other known compounds identified as β-sitosterol (2), β-sitosterol-3-O-β-D-glucoside (3), canthin-6-one (4), 10-hydroxycanthin-6-one (aervine, 5), 10-methoxycanthin-6-one (methylaervine, 6), β-carboline-1-propionic acid (7), 1-O-β-D-glucopyranosyl-(2S,3R,8E)-2-[(2′R)-2-hydroxylpalmitoylamino]-8-octadecene-1,3-diol (8), 1-O-(β-D-glucopyranosyl)-(2S,3S,4R,8Z)-2-[(2′R)-2′-hydroxytetracosanoylamino]-8(Z)-octadene-1,3,4-triol (9), (2S,3S,4R,10E)-2-[(2′R)-2′-hydroxytetracosanoylamino]-10-octadecene-1,3,4-triol (10), 6′-O-(4″-hydroxy-trans-cinnamoyl)-kaempferol-3-O-β-D-glucopyranoside (tribuloside, 11), 3-cinnamoyltribuloside (12) and sulfonoquinovosyldiacylglyceride (13). Among these, six compounds (813) are reported for the first time from this plant. Cytotoxicity evaluation of the compounds against five cancer cell lines (CHO, HepG2, HeLa, A-431 and MCF-7) shows promising IC50 values for compounds 4, 6 and 12.  相似文献   

11.
A new chalcanonol glycoside dimer, bis-O-[(I-4′) → (II-6′)]-α-hydroxyphloretin-2′-O-β-glucoside (1), in addition to six known compounds, namely ( ? )-epicatechin (2) and ( ? )-epiafzelechin (3), 4-hydroxybenzoic acid (4), protocatechuic acid (5), methylgallate (6), β-sitosterol (7) and β-sitosterol-3-O-glucoside (8), was isolated from the seeds of saw palmetto. The structures of the isolated compounds were established from the analysis of their MS and 1D and 2D NMR spectroscopic data. The antiproliferative activities of the isolated compounds towards PC3, the human prostate cancer cells were investigated. Amongst the isolated compounds, the new compound and the sterolic derivatives showed antiproliferative effects. Screening of the antioxidant effects of the isolated compounds by 2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid radical assay revealed that the isolated phenolics were active free radical scavengers.  相似文献   

12.
The phytochemical investigation of Scilla persica HAUSSKN bulbs led to the isolation of a novel homoisoflavonoid that named Scillapersicene (1) and identified as 3-(3′,4′-dihydroxybenzylidene)-8-hydroxy-5,7-dimethoxychroman-4-one along with five known homoisoflavonoids 26, whose structures were elucidated using HRFAB-MS, 1D and 2D NMR spectroscopic data. The known compounds were identified as 3-(3′,4′-dihydroxybenzyl)-5,8-dihydroxy-7-methoxychroman-4-one (2), 3,9-dihydro-autumnalin (3), autumnalin (4), 3-(3′,4′-dihydroxybenzylidene)-5,8-dihydroxy-7-methoxychroman-4-one (5) and scillapersicone (6). All compounds obtained, expect 2 and 4, showed strong cytotoxic activity against AGS cell line. The toxicity on AGS cell line was measured by 1, 3, 5 and 6 with IC50 values of 8.4, 30.5, 10.7 and 24.2 μM, respectively. In addition, the physico-chemical properties of these natural compounds were optimised using density functional method (B3LYP) with standard 6-311+G* basis set. These natural products have low-energy gaps between the first ionisation potentials and highest occupied molecular orbital. In conclusion, the low-energy gap could cause reason for cytotoxic activity of homoisoflavonoids.  相似文献   

13.
A new alkylbenzoquinone named embeliquinone (1) together with five known compounds, lupeol (2), 3-O-[6′-O-palmitoyl-β-d-glucosyl]-spinasta-7,22(23)-diene (3), quercetin (4), (2S,3S,4R,8E)-2-[(2′R)-2′-hydroxy-heneicosanoylamino]-heneicosane-1,3,4-triol-8-ene (5), and β-sitosterol-3-O-β-d-glucopyranoside (6) were isolated from the MeOH leaf extract of Embelia rowlandii by using repeated open column chromatography techniques. The structure of the new compound was characterized by analyses of 1D- and 2D-NMR, and MS data. Embeliquinone (1) had moderate anti-cell proliferation activity against A549 cell line with the IC50 value of 21.8 μM. In addition, 1 exhibited weak antibacterial activities against Klebsiella pneumoniae and Staphylococcus aureus with an MIC value of 206.0 μM in both cases.  相似文献   

14.
A new naturally occurring ent-kaurane diterpenoid dimer, 15β, 15′β-oxybis (ent-kaur-16-en-19-oic acid) (1) along with six known compounds, 15β-hydroxy-ent-kaur-16-en-19-oic acid (2), 15β-hydroxy-ent-kaur-16-en-19-oate-β-d-glucopyranoside (3), 6-hydroxykaempferol-3, 7-dimethyl ether (4), quercetagetin 3, 7, 3′-trimethyl ether (5), β-sitosterol (6) and β-sitosterol glucoside (daucosterol) (7) were isolated from the aerial parts of Pulicaria inuloides DC. Compounds 25 were isolated for the first time from genus Pulicaria. The structures of compounds 17 were established on the basis of extensive 1D and 2D NMR spectroscopic techniques in combination with ESI-MS. The antimicrobial activity of the isolated compounds was evaluated against Staphylococcus aureus, Escherichia coli and Candida albicans. Sulphorhodamine B cytotoxic assay against HepG2 (liver cancer) cell line and ABTS antioxidant assay were carried out.  相似文献   

15.
Abstract

A new peroxy fatty acid, tagetnoic acid (5) [4-((3S,6S)-6-((3E,8E)-octadeca-3,8-dien-1-yl)-3,6-dihydro-1,2-dioxin-3-yl)butanoic acid] and four known metabolites: ecliptal (5-formyl-α-terthiophene) (1), 5-(4-hydroxybut-1-ynyl)-2,2′-bithiophene (2), 22,23-dihydrospinasterone (3), and stigmasterol (4) were separated from the n-hexane fraction of the aerial parts of Tagetes minuta L. (Asteraceae). Their chemical structures were verified using IR, UV, 2D and 1D NMR, and HRMS. Compounds 3–5 displayed potent lipoxygenase inhibitory potential with IC50s 2.26, 1.83, and 1.17?μM, respectively compared to indomethacin (IC50 0.89?μM). Moreover, molecular docking study revealed that the potent activity of 5 is due to H-bonding and hydrophobic interaction. The results of this study suggested that Tagetes minuta dietary consumption would be useful for the individuals at risk of acute and chronic inflammatory disorders.  相似文献   

16.
The new coumarin 1, yuganin A (7-methoxy-8-((1S,2S)-1,2,3-trihydroxy-3-methylbutyl)-2H-chromen-2-one) along with nine known coumarins, heraclenol 3′-O-β-D-glucopyranoside (2), oxypeucedanin hydrate 3′-O-β-D-glucopyranoside (3), heraclenol (4), oxypeucedanin hydrate (5), osthole (6), oxypeucedanin (7), heraclenin (8), isoimperatorin (9), imperatorin (10) and the disaccharide sucrose (11), have been isolated from the roots of Prangos pabularia, and the structures of these isolated compounds were elucidated by spectroscopic means, especially, UV, HR-ESIMS, and 1D and 2D NMR spectroscopy. Furthermore, the anti-melanogenic effect of yuganin A and its inhibitory effect on B16 cells were evaluated. Yuganin A may be useful in the treatment of hyperpigmentation and as a skin-whitening agent in the cosmetics industry.  相似文献   

17.
A new 9,10-dihydrophenanthrene,1,5-dihydroxy-3,4,7-trimethoxy-9,10-dihydrophenanthrene (1) was isolated and identified from the whole plants of Dendrobium moniliforme, as well as 24 known compounds including hircinol (2), (2R*,3S*)-3-hydroxymethyl-9-methoxy-2-(4′-hydroxy-3′,5′-dimethoxyphenyl)-2,3,6,7-tetrahydro-phenanthro[4,3-b]furan-5,11-diol (3), diospyrosin (4), aloifol I (5), moscatilin (6), 3,4′-dihydroxy-3′,4,5-trimethoxybibenzyl (7), gigantol (8), 3,3′-dihydroxy-4,5-dimethoxybibenzyl (9), longicornuol A (10), N-trans-cinnamoyltyramine (11), paprazine (12), N-trans-feruloyl 3′-O-methyldopamine (13), moupinamide (14), dihydroconiferyl dihydro-p-coumarate (15), dihydrosinapyl dihydro-p-coumarate (16), 3-isopropyl-5-acetoxycyclohexene-2-one-1 (17), p-hydroxybenzaldehyde (18), vanillin (19), p-hydroxyphenylpropionic acid (20), vanillic acid (21), protocatechuic acid (22), (+)-syringaresinol (23), β-sitosterol (24) and daucosterol (25). Compounds 3, 4, 13, 16, 17 and 20 were isolated from the Dendrobium genus for the first time, and compounds 2, 5, 7, 912, 14, 15, 18, 21 and 22 were originally obtained from D. moniliforme.  相似文献   

18.
A new lactam alkaloid named oleraciamide D (1), indentified as (5R)-4-(3-methoxy-4-hydroxyphenyl)-5-(4-hydroxyphenyl)-5,6-dihydropyridin-2(1H)-one, together with five known compounds, indole-3-aldehyde (2), portulacatone (3), N-trans-feruloyloctopamine (4), N-trans-feruloyl-3′-O-methyldopamine (5) and N-trans-feruloyltyramine (6) were isolated from Potulaca oleracea L. Among them, indole-3-aldehyde (2) was isolated from the medicine for the first time. The structure of the new alkaloid was elucidated via UHPLC-ESI-Q-TOF/MS, 1D NMR and 2D NMR. The five known compounds were established by comparing the 1H-NMR and 13C NMR with the reported literature. Oleraciamide D (1) showed cytotoxicity against SH-SY5Y cells when concentration at 50 uM by CCK-8 method.  相似文献   

19.
Nine compounds were isolated from Nocardia sp. YIM 64630, and their structures were elucidated as 5′-O-acetyl-2′-deoxyuridine (1), 22E,24R-5α,6α-epoxyergosta-8(14),22-diene-3β,7α-diol (2), 22E,24R-5α,6α-epoxyergosta-8,22-diene-3β,7α-diol (3), 22E,24R-ergosta-7,22-diene-3β,5α,6β-triol (4), 5α,8α-epidioxyergosta-6,22-dien-3β-ol (5), 4′,5,6-trihydroxy-7-methoxyisoflavone (6), 2,4,4′-trihydroxy-deoxybenzoin (7), methyl [4-hydroxyphenyl]acetate (8) and daidzein by extensive spectroscopic analyses. Compound 1 was isolated from natural resources for the first time. The antimicrobial and antioxidant activities of compounds 18 were investigated.  相似文献   

20.
Four new anthraquinone-1,5-disulfonate (L)-based metal complexes with N,N-bidentate chelating coligands, {[Pb(phen)2(L)]?·?4H2O} n (1), {[Mn2(2,2′-bipy)2(H2O)6(L)]?·?L?·?6H2O} (2), [Co(phen)2(H2O)(L)] (3), and [Zn(phen)2(H2O)(L)] (4) (phen = 1,10-phenanthroline and 2,2′-bipy?=?2,2′-bipyridine), have been hydrothermally synthesized and were structurally characterized by single-crystal X-ray diffraction, elemental analyses, FT-IR spectra, thermogravimetric curves, and solid luminescence spectra. Structural analysis suggests that 1 is a polymeric 1D zigzag chain bridged by dianionic L. In contrast, the other three complexes have discrete centrosymmetric binuclear structure for 2 and isolated isomorphic mononuclear entities for 3 and 4, which are further assembled into 3D supramolecular networks by abundant hydrogen-bonding and/or π–π stacking interactions. Additionally, 2 and 4 exhibit favorable luminescent emissions, suggesting they are potential candidates for light emission materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号