首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a (2+1)-dimensional generalized Bogoyavlensky–Konopelchenko (gBK) equation is investigated, which can be used to describe the interaction of a Riemann wave propagating along y-axis and a long wave propagating along x-axis. The complete integrability of the gBK equation is systematically presented. By employing Bell’s polynomials, a lucid and systematic approach is proposed to systematically study its bilinear formalism, bilinear Bäcklund transformations, Lax pairs, respectively. Furthermore, based on multidimensional Riemann theta functions, the periodic wave solutions and soliton solutions of the gBK equation are derived. Finally, an asymptotic relation between the periodic wave solutions and soliton solutions are strictly established under a certain limit condition.  相似文献   

2.
王云虎  陈勇 《中国物理 B》2013,22(5):50509-050509
We investigate the extended (2+1)-dimensional shallow water wave equation. The binary Bell polynomials are used to construct bilinear equation, bilinear Bäcklund transformation, Lax pair, and Darboux covariant Lax pair for this equation. Moreover, the infinite conservation laws of this equation are found by using its Lax pair. All conserved densities and fluxes are given with explicit recursion formulas. The N-soliton solutions are also presented by means of the Hirota bilinear method.  相似文献   

3.
In this paper we consider exact solutions to the KdV equation under the Bargmann constraint. Solutions expressed through exponential polynomials and Wronskians are derived by bilinear approach through solving the Lax pair under the Bargmann constraint. It is also shown that the potential u in the stationary Sehrodinger equation can be a summation of squares of wave functions from bilinear point of view.  相似文献   

4.
In this paper, we are concerned with a modified complex short pulse (mCSP) equation of defocusing type. Firstly, we show that the mCSP equation is linked to a complex coupled dispersionless equation of defocusing type via a hodograph transformation, thus, its Lax pair can be deduced. Then the bilinearization of the defocusing mCSP equation is formulated via dependent variable and hodograph transformations. One- and two-dark soliton solutions are found by Hirota’s bilinear method and their properties are analyzed. It is shown that, depending on the parameters, the dark soliton solution can be either smoothed, cusponed or looped one. More specifically, the dark soliton tends to be evolved into a singular (cusponed or looped) one due to the increase of the spatial wave number in background plane waves and the increase of the depth of the trough. In the last part of the paper, we derive the defocusing mCSP equation from the single-component extended KP hierarchy by the reduction method. As a by-product, the N-dark soliton solution in the form of determinants for the defocusing mCSP is provided.  相似文献   

5.
In this paper, we study an integrable generalization of the associated Camassa–Holm equation. The generalized system is shown to be integrable in the sense of Lax pair and the bilinear Bäcklund transformations are presented through the Bell polynomial technique. Meanwhile, its infinite conservation laws are constructed, and conserved densities and fluxes are given in explicit recursion formulas. Furthermore, a Darboux transformation for the system is derived with the help of the gauge transformation between two Lax pairs. As an application, soliton and periodic wave solutions are given through the Darboux transformation.  相似文献   

6.
Under investigation in this paper is a generalized (3+1)-dimensional Kadomtsev–Petviashvili equation in fluid dynamics and plasma physics. Soliton and one-periodic-wave solutions are obtained via the Hirota bilinear method and Hirota–Riemann method. Magnitude and velocity of the one soliton are derived. Graphs are presented to discuss the solitons and one-periodic waves: the coefficients in the equation can determine the velocity components of the one soliton, but cannot alter the soliton magnitude; the interaction between the two solitons is elastic; the coefficients in the equation can influence the periods and velocities of the periodic waves. Relation between the one-soliton solution and one-periodic wave solution is investigated.  相似文献   

7.
The bilinear form for a nonisospectral and variable-coefficient KdV equation is obtained and some exact soliton solutions are derived through Hirota method and Wronskian technique. We also derive the bilinear transformation from its Lax pairs and find solutions with the help of the obtained bilinear transformation.  相似文献   

8.
邓淑芳 《中国物理快报》2006,23(7):1662-1665
The bilinear form for a nonisospectral and variable-coefficient Kadomtsev-Petviashvili equation is obtained and some exact soliton solutions are derived by the Hirota method and Wronskian technique. We also derive the bilinear Backlund transformation from its Lax pairs and find solutions with the help of the obtained bilinear Bgcklund transformation.  相似文献   

9.
In this paper, we put our focus on a variable-coe~cient fifth-order Korteweg-de Vries (fKdV) equation, which possesses a great number of excellent properties and is of current importance in physical and engineering fields. Certain constraints are worked out, which make sure the integrability of such an equation. Under those constraints, some integrable properties are derived, such as the Lax pair and Darboux transformation. Via the Darboux transformation, which is an exercisable way to generate solutions in a recursive manner, the one- and two-solitonic solutions are presented and the relevant physical applications of these solitonic structures in some fields are also pointed out.  相似文献   

10.
Lin Luo 《Physics letters. A》2011,375(7):1059-1063
Based on the binary Bell polynomials, the bilinear form for the Boiti-Leon-Manna-Pempinelli equation is obtained. The new exact solutions are presented with an arbitrary function in y, and soliton interaction properties are discussed by the graphical analysis. Further, the bilinear Bäcklund transformation is derived by the binary Bell polynomials, and the corresponding Lax pair is obtained by linearizing the bilinear equation.  相似文献   

11.
In this paper, based on the Hirota bilinear method and symbolic computation approach, multiple-order rogue waves of (2+1)-dimensional Boussinesq type equation are constructed. The reduced bilinear form of the equation is deduced by the transformation of variables. Three kinds of rogue wave solutions are derived by means of bilinear equation. The maximum and minimum values of the first-order rogue wave solution are given at a specific moment. Furthermore, the second-order and third-order rogue waves are explicitly derived. The dynamic characteristics of three kinds of rogue wave solutions are shown by three-dimensional plot.  相似文献   

12.
吴勇旗 《中国物理快报》2008,25(8):2739-2742
One- and two-periodic wave solutions for (3+l)-dimensional Boussinesq equation are presented by means of Hirota's bilinear method and the Riemann theta function. The soliton solution can be obtained from the periodic wave solution in an appropriate limiting procedure.  相似文献   

13.
In this research paper, the well-known simple Hirota’s method is employed to study the (2+1)-dimensional Sawad-Kotera equation. The logarithmic variable transformation is implemented on the proposed problem to construct the bilinear Hirota form. Based on its bilinear representation, the features of multi soliton solutions, M-lump waves, and the mixed 1-M-lump with one-soliton, and two-soliton solutions are explored. For one M-lump solution, the wave motion in the x and y directions are also studied. To better understand the physical phenomena of the gained solutions, three-dimensional graphics and their corresponding surfaces are also presented.  相似文献   

14.
A new (2+1)-dimensional higher-order extended asymmetric Nizhnik–Novikov–Veselov (eANNV) equation is proposed by introducing the additional bilinear terms to the usual ANNV equation. Based on the independent transformation, the bilinear form of the eANNV equation is constructed. The lump wave is guaranteed by introducing a positive constant term in the quadratic function. Meanwhile, different class solutions of the eANNV equation are obtained by mixing the quadratic function with the exponential functions. For the interaction between the lump wave and one-soliton, the energy of the lump wave and one-soliton can transfer to each other at different times. The interaction between a lump and two-soliton can be obtained only by eliminating the sixth-order bilinear term. The dynamics of these solutions are illustrated by selecting the specific parameters in three-dimensional, contour and density plots.  相似文献   

15.
An N=1 supersymmetric generalization of coupled dispersionless (SUSY-CD) integrable system has been proposed by writing its superfield Lax representation. It has been shown that under a suitable variable transformation, the SUSY-CD integrable system is equivalent to N=1 supersymmetric sine-Gordon equation. A superfield bilinear form of SUSY-CD integrable system has been proposed by using super Hirota operator. Explicit expressions of superfield soliton solutions of SUSY-CD integrable system have been obtained by using the Hirota method.  相似文献   

16.
In this paper, based on a Riemann theta function and Hirota's bilinear form, a straightforward way is presented to explicitly construct Riemann theta functions periodic waves solutions of the isospectral BKP equation. Once the bilinear form of an equation obtained, its periodic wave solutions can be directly obtained by means of an unified theta function formula and the way of obtaining the bilinear form is given in this paper. Based on this, the Riemann theta function periodic wave solutions and soliton solutions are presented. The relations between the periodic wave solutions and soliton solutions are strictly established and asymptotic behaviors of the Riemann theta function periodic waves are analyzed by a limiting procedure. The N-soliton solutions of isospectral BKP equation are presented with its detailed proof.  相似文献   

17.
In this paper, based on a Riemann theta function and Hirota's bilinear form, a straightforward way is presented to explicitly construct Riemann theta functions periodic waves solutions of the isospectral BKP equation.Once the bilinear form of an equation obtained, its periodic wave solutions can be directly obtained by means of an unified theta function formula and the way of obtaining the bilinear form is given in this paper. Based on this, the Riemann theta function periodic wave solutions and soliton solutions are presented. The relations between the periodic wave solutions and soliton solutions are strictly established and asymptotic behaviors of the Riemann theta function periodic waves are analyzed by a limiting procedure. The N-soliton solutions of isospectral BKP equation are presented with its detailed proof.  相似文献   

18.
Under investigation in this paper is an extended forced Korteweg-de Vries equation with variable coefficients in the fluid or plasma. Lax pair, bilinear forms, and bilinear Bäcklund transformations are derived. Based on the bilinear forms, the first-, second-, and third-order nonautonomous soliton solutions are derived. Propagation and interaction of the nonautonomous solitons are investigated and influence of the variable coefficients is also discussed: Amplitude of the first-order nonautonomous soliton is determined by the spectral parameter and perturbed factor; there exist two kinds of the solitons, namely the elevation and depression solitons, depending on the sign of the spectral parameter; the background where the nonautonomous soliton exists is influenced by the perturbed factor and external force coefficient; breather solutions can be constructed under the conjugate condition, and period of the breather is related to the dispersive and nonuniform coefficients.  相似文献   

19.
This paper is concerned with a negative order modified Korteweg-de Vries (nmKdV) equation which is in the negative flow of the mKdV hierarchy. We construct the breather solutions by Hirota's bilinear method and derive the infinite conservation laws through the Lax pair of the nmKdV equation. By constructing a new Lyapunov function with the conservation laws, we obtain the nonlinear stability of the breather solutions.  相似文献   

20.
In this paper, investigation is given to a forced generalized variable-coefficient Korteweg-de Vries equation for the atmospheric blocking phenomenon. Based on the Lax pair, under certain variable-coefficient-dependent constraints, we present an infinite sequence of the conservation laws. Through the Riccati equations obtained from the Lax pair, a Wahlquist-Estabrook-type Bäcklund transformation (BT) is derived, based on which the nonlinear superposition formula as well as one- and two-soliton-like solutions are obtained. Via the truncated Painlevé expansion, we give a Painlevé BT, along with the one-soliton-like solutions. With the Painlevé BT, bilinear forms are constructed, and we get a bilinear BT as well as the corresponding one-soliton-like solutions. Bell-type bright and dark soliton-like waves and kink-type soliton-like waves are observed, respectively. Graphic analysis shows that (1) the velocities of the soliton-like waves are related to h(t), d(t), f(t) and R(t), while the soliton-like wave amplitudes just depend on f(t), and (2) with the nonzero f(t) and R(t), soliton-like waves propagate on the varying backgrounds, where h(t), d(t) and f(t) are the dispersive, dissipative and line-damping coefficients, respectively, R(t) is the external-force term, and t is the scaled time coordinate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号