首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The major components, 1‐hydroxy‐2,3,5‐trimethoxy‐xanthone (HM‐1) and 1,5‐dihydroxy‐2,3‐dimethoxy‐xanthone (HM‐5) isolated from Halenia elliptica D. Don (Gentianaceae), could cause vasodilatation in rat coronary artery with different mechanisms. In this work, high‐performance liquid chromatography coupled to ion trap time‐of‐flight mass spectrometry (LCMS‐IT‐TOF) was used to clarify the metabolic pathways, and CYP450 isoform involvement of HM‐1 and HM‐5 were also studied in rat. At the same time, in vivo inhibition effects of HM‐1 and ethyl acetate extracts from origin herb were studied. Three metabolites of HM‐5 were found in rat liver microsomes (RLMs); demethylation and hydroxylation were the major phase I metabolic reactions for HM‐5. Multiple CYP450s were involved in metabolism of HM‐1 and HM‐5. The inhibition study showed that HM‐5 inhibited Cyp1a2, 2c6 and 2d2 in RLMs. HM‐1 inhibited activities of Cyp1a2, Cyp2c6 and Cyp3a2. In vivo experiment demonstrated that both HM‐1 and ethyl acetate extracts could inhibit Cyp3a2 in rats. In conclusion, the metabolism of xanthones from the origin herb involved multiple CYP450 isoforms; in vitro, metabolism of HM‐5 was similar to that of its parent drug HM‐1, but their inhibition effects upon CYP450s were different; in vivo, Cyp3a2 could be inhibited by HM‐1 and ethyl acetate extracts.  相似文献   

2.
Herbal extracts including asiatic acid (AA) have become popular candidates of anti-photoaging agents due to their anti-inflammatory and antioxidant properties and minimal side effect. Nevertheless, low bioavailability due to poor solubility limits their practical application. In this study, a highly bioavailable form of AA called AAGS (compounded by asiatic acid and glucosamine) was investigated for its anti-photoaging effect using both in vitro and in vivo models along with UVB irradiation. The results showed that AAGS alleviated UVB-induced cell proliferation inhibition by reducing G2 phase arrest and cell apoptosis rate as well as the gene expressions of P53, BAX, CASPASE 3 and CASPASE 9, but enhancing BCL-2 expression. It also reduced the production of reactive oxygen species along with increased gene expression of GPX-1 and downregulated the gene expression of IL-1β, IL-6, IL-8, IL-17 and TNF-α compared to nontreated cells. In vivo results demonstrated the antiphotodamaging effects by restoring skin thickness, collagen content and reducing MMPs expression, which are also supported by reduced MMPs gene expression and enhanced collagen I and TGF-β1 gene expression in vitro. Thus, AAGS may become a potential anti-photoaging agent for topical use due to its capability of self-assembling into a water gel.  相似文献   

3.
Rhizoma et Radix Polygoni Cuspidati (RRPC) is commonly prescribed for the treatment of amenorrhea, arthralgia, jaundice and abscess in traditional Chinese medicine. Previous pharmacological studies have indicated that polyphenols are the main pharmacological active ingredients in RRPC. Meanwhile, the poor bioavailability of polyphenols in RRPC implies that those components are probably metabolized by intestinal bacteria before absorption. However, there is rather limited information about RRPC''s metabolites produced by intestinal bacteria and the intestinal absorbed constituents. In the present study, the metabolites were characterized after the aqueous extract of RRPC was incubated with the crude enzyme of human intestinal bacteria in vitro. The metabolic characteristics of glycosides in RRPC were figured out by comparing the metabolic profiles of emodin‐8‐O‐β‐d ‐glucopyranoside and polydatin between aqueous extract of RRPC and equivalent amounts of these two glycosides. The transitional constituents absorbed into blood were investigated in rats via intraduodental administration and portal vein intubation. A total of 38 prototype components and 43 metabolites were detected and characterized in vivo. The overall results demonstrated that the intestinal bacteria played an important role in the metabolism of RRPC, and the main metabolic pathways were hydrolysis in vitro, glucuronidation and sulfation in vivo.  相似文献   

4.
Polygonum cognatum Meisn. (Polygonaceae) is used both as food and as a folk medicine to treat diabetes. This study aimed to evaluate the effect of the extracts, along with isolated compounds, from P. cognatum aerial parts on diabetes. In vitro studies were conducted using an α-glucosidase inhibitory assay, while in vivo antidiabetic studies were carried out on streptozotocin-induced diabetic rats. Effective extracts were subjected to isolation studies, and structures of the compounds were elucidated by spectroscopic methods. The ethyl acetate and n-butanol extracts had the highest effect in both in vitro and in vivo experiments. They also decreased aspartate transaminase, alanine transaminase and malondialdehyde levels, while increasing glutathione and superoxide dismutase activity in rats. From the active extracts, 11 phenolic compounds were isolated and characterized. Among the isolated compounds, quercetin was found to be the most active according to α-glucosidase inhibitory activity studies. This study provided scientific evidence for the traditional use of P. cognatum as a folk medicine for treating diabetes. The findings suggest that the ethyl acetate and n-butanol extracts, as well as quercetin, have the potential for development as antidiabetic agents.  相似文献   

5.
This study evaluates the in vitro anti-snake venom potential of Peristrophe bivalvis (PB) extracts against Naja kaouthia (NK) and Trimeresurus albolabris (TA) venoms, including inhibition of cytotoxic effects and enzymatic activities, and the binding-precipitation of extracts and venom proteins analysis. In addition, the antioxidant, cytotoxic and in vivo acute oral toxic activities of PB extracts are also reported. The in vitro cytotoxic and enzymatic analysis reveals that the ethanol extracts of stems and leaves of PB showed good anti-snake venom activity against NK and TA venoms. In addition, the antioxidant result indicated that only the ethanol extract of leaves exhibited weak DPPH radical-scavenging activity. The ethanol whole-plant extract of PB also showed no cytotoxicity against four cell lines. Moreover, the in vivo acute oral toxicity result of the ethanol whole-plant extract showed that all treated rats did not exhibit abnormal toxic signs or deaths.  相似文献   

6.
The progression of diabetic complications can be prevented by inhibition of aldose reductase and fidarestat considered to be highly potent. To date, metabolites of the fidarestat, toxicity, and efficacy are unknown. Therefore, the present study on characterization of hitherto unknown in vitro and in vivo metabolites of fidarestat using liquid chromatography–electrospray ionization tandem mass spectrometry (LC/ESI/MS/MS) is undertaken. In vitro and in vivo metabolites of fidarestat have been identified and characterized by using LC/ESI/MS/MS and accurate mass measurements. To identify in vivo metabolites, plasma, urine, and feces samples were collected after oral administration of fidarestat to Sprague–Dawley rats, whereas for in vitro metabolites, fidarestat was incubated in human S9 fraction, human liver microsomes, and rat liver microsomes. Furthermore, in silico toxicity and efficacy of the identified metabolites were evaluated. Eighteen metabolites have been identified. The main in vitro phase I metabolites of fidarestat are oxidative deamination, oxidative deamination and hydroxylation, reductive defluroniation, and trihydroxylation. Phase II metabolites are methylation, acetylation, glycosylation, cysteamination, and glucuronidation. Docking studies suggest that oxidative deaminated metabolite has better docking energy and conformation that keeps consensus with fidarestat whereas the rest of the metabolites do not give satisfactory results. Aldose reductase activity has been determined for oxidative deaminated metabolite (F‐1), and it shows an IC50 value of 0.44 μM. The major metabolite, oxidative deaminated, did not show any cytotoxicity in H9C2, HEK, HEPG2, and Panc1 cell lines. However, in silico toxicity, the predication result showed toxicity in skin irritation and ocular irritancy SEV/MOD versus MLD/NON (v5.1) model for fidarestat and its all metabolites. In drug discovery and development research, it is distinctly the case that the potential for pharmacologically active metabolites must be considered. Thus, the active metabolites of fidarestat may have an advantage as drug candidates as many drugs were initially observed as metabolites.  相似文献   

7.
Withaferin A (WA) is one of the major bioactive steroidal lactones with extensive pharmacological activities present in the plant Withania somnifera. The absolute oral bioavailability of WA remains unknown and human‐related in vitro data are not available. Therefore, in the present study, the absolute oral bioavailability of WA in male rats and the in vitro screening of absorption factors by Q‐trap and LC–MS/MS analysis were conducted to explore possible clinical properties of WA. The developed and validated analytical methods were successfully applied to the pharmacokinetic studies and in vitro measurement of WA. The oral bioavailability was determined to be 32.4 ± 4.8% based on intravenous (5 mg/kg) and oral (10 mg/kg) administrations of WA in male rats. The in vitro results showed that WA could be easily transported across Caco‐2 cells and WA did not show as a substrate for P‐glycoprotein. Moreover, the stability of WA was similar between male rat and human in simulated gastric fluid (stable), in intestinal microflora solution (slow decrease) and in liver microsomes (rapid depletion, with a half‐life of 5.6 min). As such, the first‐pass metabolism of WA was further verified by rat intestine‐liver in situ perfusion, revealing that WA rapidly decreased and 27.1% remained within 1 h, while the content of three major metabolites (M1, M4, M5) identified by Q‐trap increased. This perfusion result is consistent with the oral bioavailability results in vivo. The first‐pass metabolism of WA might be the main barrier in achieving good oral bioavailability in male rats and it is predicted to be similar in humans. This study may hold clinical significance.  相似文献   

8.
Geniposide, an iridoid glycoside, is an important and characteristic compound in the fruits of Gardenia jasminoides Ellis, a commonly used medicinal herb in Chinese traditional and folk medicine for the treatment of inflammation and jaundice. However, few studies have been carried out on the metabolism of geniposide. In this study, we have established a rapid and sensitive method using ultra‐performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (UPLC/ESI‐QTOF‐MS) for analysis of the metabolic profile of geniposide in rat urine after oral administration. A total of ten metabolites were detected and identified by comparing their fragmentation patterns with that of geniposide using Metabolynx? and MassFragment? software tools. The results revealed that the principal metabolism pathways of geniposide in rat occurred after deglycosylation of the irdoid glycoside take place and this is followed by glucuronidation and the pyran‐ring cleavages. The major metabolite, the glucuronic acid conjugate of genipin as observed in vivo, was further confirmed by the in vitro enzymatic study. The results of this work have demonstrated the feasibility of the UPLC/ESI‐QTOF‐MS approach for rapid and reliable characterization of metabolites from iridoid compounds. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

Methamidophos (Met) is a weak inhibitor of housefly head AChE but at the same time it is highly toxic to the common housefly. The lethality of Met is believed to be due to AChE inhibition. An extensive QSAR study may help in determining the mode of action of Met in vivo and in vitro and provide a rational for its high insecticidal toxicity. Acephate (Ace), like Met, is a poor inhibitor of AChE in vitro and has a comparable to Met insect toxicity in vivo. Contrary to Met, though, Ace has much lower mammalian toxicity. Understanding the structural properties which make insecticides toxic to insects but not to mammals is of great importance, since mammals (including humans) are inadvertently exposed to these compounds.

Our results were consistent with the model in which both the in vitro and in vivo toxicity of Met depends on the inhibition of the active center of AChE by the unchanged Met. An optimal susceptibility to hydrolysis is needed for Met and its analogs to have high insecticidal activity since in order to phosphorylate AChE they need to be hydrolyzed and at the same time their stability is of great importance in vivo for accumulating at the site of action. The insecticidal activity of Ace analogs may be due to direct interaction with the active center of the AChE. The mammalian toxicity of Ace analogs may be due to interaction with an 'allosteric' reaction center in the AChE.  相似文献   

10.
11.
The effects of triphenylantimony(V) catecholate Ph3Sb(Cat) (1) and its spiroendoperoxide Ph3Sb(L‐O2) (2) (Cat = 3,6‐di‐tert‐butyl‐4,5‐dimethoxycatecholate) on lipid peroxidation (LP) in vitro and in vivo were examined in BALB/c line mice. A comparative study of the impact of compounds 1 and 2 on LP under similar conditions was made by measuring the formation of thiobarbituric acid reactive substances (TBARS). The anti‐ or pro‐oxidant action of complexes 1 and 2 may be caused by the different redox level of the ligand acting as radical scavenger and/or by the bound molecular oxygen promoting the oxidation process. Biological experiments (in vitro and in vivo) were performed using mouse tissue homogenates. Decreasing TBARS concentration was observed in all examined tissues and blood serum (in vitro as well as in vivo) for catecholate 1. These results indicate inhibition of LP in the presence of complex 1. In contrast to 1, spiroendoperoxide 2 increases the level of TBARS in tissue homogenates. Minor fluctuations of TBARS concentration in erythrocytes and in blood serum indicate the absence of an obvious anti/pro‐oxidant influence of 2 on the LP process in vivo. The role of catecholate fragment was found to be essential in explaining antioxidant properties. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
13.
Assessment of xenoestrogenic activity in human serum samples requires the removal of endogenous sex hormones to assure that the activity measured originates from xenobiotic compounds only. Serum samples representing high, medium and lower accumulation of persistent organic pollutants (POPs) were extracted using solid-phase extraction (SPE) followed by normal-phase high-performance liquid chromatography (NP-HPLC) for separation of POPs from endogenous hormones. The recovery of polychlorinated biphenyl (PCB) congeners in spiked serum samples was up to 86 %, making the extraction method suitable for the study. MVLN cells, stably transfected with an estrogen receptor (ER) luciferase reporter vector (estrogen response element chemically activated luciferase expression, ERE-CALUX), were exposed to the reconstituted SPE-HPLC extracts for determination of the integrated estrogenic activity. The effects of PCBs were analyzed by direct in vitro exposure of PCBs (nos. 138, 153, 180) and by ex vivo analysis of SPE-HPLC extracts from serum spiked with the PCBs. Similar effects on ER transactivation were observed for the direct in vitro and the ex vivo analysis experiments. The ER transactivation responses determined for actual serum samples were in the linear range of the dose-response curve. 17β-Estradiol titrations showed that the xenoestrogenic effects were mediated via ER. Moreover, our SPE-HPLC-ERE-CALUX assay was demonstrated to elicit high interlaboratory correlation. In the present study the combination of SPE-HPLC purification and the ex vivo estrogenic responses measured by ERE-CALUX was validated and considered to be a valuable tool to assess the combined ER effect of lipophilic serum POPs where additive/synergistic and agonistic/antagonistic effects are integrated giving an overall estimate of exposure and bioactivity.   相似文献   

14.
Hemidesmus indicus (L.) R. Br. was extensively used as hypoglycaemic agent and significance of this plant on secondary complications of diabetes remained unknown. The present study was to investigate the anti-cataractous activity of H. indicus against streptozotocin (STZ)-induced diabetic cataract in rodent model. Root extracts have been prepared and tested for inhibition of rat lens aldose reductase (AR) activity. In addition, its pharmacological potential has been investigated in STZ-induced diabetic cataract. Methanol extract of H. indicus-inhibited AR activity in vitro decreased the blood glucose levels, inhibited the AR activity and delayed the onset and progression of cataract in a dose-dependent manner in in vivo and the antioxidant markers have been normalised. Our results demonstrate that H. indicus has decrease the osmotic stress by inhibiting the AR activity and prevented the loss of antioxidants and delayed the progression of diabetic cataract in STZ-induced diabetic rats.  相似文献   

15.
16.
Inula graveolens (L.) Desf. is an annual aromatic herb which has various uses on alternative medicine in many region of the world. In this study, antioxidant activities of ethanol and water extracts of the plant leaves were determined by in vitro DPPH method and phenolic composition of the plant sample was determined by LC-MS/MS analysis. The results showed that chlorogenic acid, quinic acid, hyperoside, protocatechuic acid and quercetin were the major phenolic compounds among the 27 standard compounds. The significant antioxidant capacity of the plant might be related with the high abundance of phenolic compounds.  相似文献   

17.
The in vivo and in vitro effects of Cd2+ and the CYP1A inductor β-naphthoflavone(β-NF) on the hepatic cytochrome P450 (Cyt 450) monooxygenases were studied in silver carp (Hypophthalmichtys molitrix V.), wels (Silurus glanis L.), and carp (Cyprinus carpio). In vivo treatment of carp with a high dose of Cd2+ (10 mg kg−1, for 3 days) caused a strong inhibition of 7-ethoxyresorufin-O-deethylase (EROD) and a lower inhibition of 7-ethoxycoumarin-O-deethylase (ECOD) activity. The low-dose cadmium treatment (2 mg kg−1 Cd2+, for 6+3 days) resulted in 4-fold increase in EROD and a 3-fold increase in ECOD activity. The combined treatment with Cd2+ and β-NF in both cases led to a loss of EROD inducibility. The silver carp and wels were treated with 10 mg L−1 Cd2+ for 72 h in water. The Cyt P450 content in the wels liver microsomes was increased significantly after treatment for 48 h, whereas there was only a slight, not significant increase in Cyt P450 content in the silver carp microsomes. While the Cd2+ treatment resulted in inhibition of the CYP1A isoenzymes (EROD and ECOD), the APND (aminopyrene-N-demethylase, CYP2B or CYP3A isoenzyme) activity was increased 3- to 4-fold in both fish species. In vitro experiments of the effect of Cd2+ led to a concentration-dependent inhibition in all three investigated fish species. The ECOD isoenzyme of silver carp was the most sensitive to Cd2+. The lowest concentration of Cd2+ resulted in 50% inhibition. The APND isoenzyme was similarly sensitive to Cd2+ in all three investigated fish species. The most sensitive species was the wels, and the least sensitive were the carp isoenzyme. FTIR spectroscopy confirmed that cadmium caused damage to the protein structure. These results support the enzyme activity measurements measured in vivo and in vitro.  相似文献   

18.
Understanding intestinal absorption for pharmaceutical compounds is vital to estimate the bioavailability and therefore the in vivo potential of a drug. This study considers the application of micellar liquid chromatography (MLC) to predict passive intestinal absorption with a selection of model compounds. MLC is already known to aid prediction of absorption using simple surfactant systems; however, with this study the focus was on the presence of a more complex, bile salt surfactant, as would be encountered in the in vivo environment. As a result, MLC using a specific bile salt has been confirmed as an ideal in vitro system to predict the intestinal permeability for a wide range of drugs, through the development of a quantitative partition–absorption relationship. MLC offers many benefits including environmental, economic, time‐saving and ethical advantages compared with the traditional techniques employed to obtain passive intestinal absorption values. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Electrochemical DNA biosensors are promising tools for the fast, inexpensive and simple in vitro analysis for the determination of free radicals and antioxidants. High concentrations of antioxidants in such compounds as phenolic acids and plant extracts, act as free radical terminators which reduce the effect of the oxidative dam-age on DNA. The electrochemical behavior of three representative phenolic acids, caffeic acid, gallic acid and trolox were studied by cyclic voltammetry. Moreover, the determination of the above antioxidants under the optimized conditions (scan rate, deposition potential and time) using differential pulse voltammetry was also investigated. In vitro studies focused on their antioxidative effect were performed by adsorptive transfer stripping voltammetry and dsDNA biosensor. Using Fenton’s system, with FeSO4 and H2O2 was chosen as a strong oxidative system. This biosensor was applied as a screening antioxidant test in order to estimate the antioxidant capacity of aqueous herb extracts.   相似文献   

20.
Triclosan is a widely used broad‐spectrum antibacterial agent that acts by specifically inhibiting enoyl–acyl carrier protein reductase. An in vitro metabolic study of triclosan was performed by using Sprague‐Dawley (SD) rat liver S9 and microsome, while the in vivo metabolism was investigated on SD rats. Twelve metabolites were identified by using in‐source fragmentation from high‐performance liquid chromatography/negative atmospheric pressure chemical ionization ion trap mass spectrometry (HPLC/APCI‐ITMS) analysis. Compared to electrospray ionization mass spectrometry (ESI‐MS) and tandem mass spectrometry (MS/MS) that gave little fragmentation for triclosan and its metabolites, the in‐source fragmentation under APCI provided intensive fragmentations for the structural identifications. The in vitro metabolic rate of triclosan was quantitatively determined by using HPLC/ESI‐ITMS with the monitoring of the selected triclosan molecular ion. The metabolism results indicated that glucuronidation and sulfonation were the major pathways of phase II metabolism and the hydroxylated products were the major phase I metabolites. Moreover, glucose, mercapturic acid and cysteine conjugates of triclosan were also observed in the urine samples of rats orally administrated with triclosan. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号