首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this article, we study the spectrum of the Stokes operator in a 3D two layer domain with interface, obtain the asymptotic estimates on the spectrum of the Stokes operator as thickness ε goes to zero. Based on the spectral decomposition of the Stokes operator, a new average-like operator is introduced and applied to the study of Navier-Stokes equation in the two layer thin domains under interface boundary condition. We prove the global existence of strong solutions to the 3D Navier-Stokes equations when the initial data and external forces are in large sets as the thickness of the domain is small. This article is a continuation of our study on the Stokes operator under Navier friction boundary condition. Due to the viscosity distinction between the two layers, the Stokes operator displays radically different spectral structure from that under Navier friction boundary condition, then causes great difficulty to the analysis.  相似文献   

2.
Hit-and-run algorithms are Monte Carlo methods for detecting necessary constraints in convex programming including semidefinite programming. The well known of these in semidefinite programming are semidefinite coordinate directions (SCD), semidefinite hypersphere directions (SHD) and semidefinite stand-and-hit (SSH) algorithms. SCD is considered to be the best on average and hence we use it for comparison.We develop two new hit-and-run algorithms in semidefinite programming that use diagonal directions. They are the uniform semidefinite diagonal directions (uniform SDD) and the original semidefinite diagonal directions (original SDD) algorithms. We analyze the costs and benefits of this change in comparison with SCD. We also show that both uniform SDD and original SDD generate points that are asymptotically uniform in the interior of the feasible region defined by the constraints.  相似文献   

3.
We consider a two‐dimensional singularly perturbed transmission problem with two different diffusion coefficients, in a domain with smooth (analytic) boundary. The solution will contain boundary layers only in the part of the domain where the diffusion coefficient is high and interface layers along the interface. Utilizing existing and newly derived regularity results for the exact solution, we prove the robustness of an hp finite element method for its approximation. Under the assumption of analytic input data, we show that the method converges at an “exponential” rate, provided the mesh and polynomial degree distribution are chosen appropriately. Numerical results illustrating our theoretical findings are also included. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

4.
For one-dimensional nonlinear lattices, such as Toda lattice, it has been extensively studied. By considering the nonlinear effects of two-dimensional lattice, we set up the equation of motion for each particles (atoms, molecules or ions). For small amplitude and long wavelength nonlinear waves in this system, both the linear dispersion relation and the coupled Korteweg de Vries (KdV) equation are obtained. The simple soliton solution is obtained. If the nonlinear lattice is symmetric in the x and y directions, It is noted that there are two kinds of solitons. one is that propagates in either x or y directions, (1, 0) or (0, 1), the other is that propagates in the direction of (1, 1). It is in agreements with that of one-dimensional lattice. The different properties are investigated for different nonlinear interacting potentials, such as Toda potential, Morse potential and LJ potential.  相似文献   

5.
The paper is devoted to an integral equation algorithm for studying the scattering of plane waves by multilayer diffraction gratings under oblique incidence. The scattering problem is described by a system of Helmholtz equations with piecewise constant coefficients in ?2 coupled by special transmission conditions at the interfaces between different layers. Boundary integral methods lead to a system of singular integral equations, containing at least two equations for each interface. To deal with an arbitrary number of material layers we present the extension of a recursive procedure developed by Maystre for normal incidence, which transforms the problem to a sequence of equations with 2×2 operator matrices on each interface. Necessary and sufficient conditions for the applicability of the algorithm are derived.  相似文献   

6.
A linear two-dimensional boundary value problem, that describes steady-state surface and internal waves due to the forward motion of a body in a fluid consisting of two superposed layers with different densities, is considered. The body is fully submerged and intersects the interface between the two layers. Two well-posed formulations of the problem are proposed in which, along with the Laplace equation, boundary conditions, coupling conditions on the interface, and conditions at infinity, a pair of supplementary conditions are imposed at the points where the body contour intersects the interface. In one of the well-posed formulations (where the differences between the horizontal momentum components are given at the intersection points), the existence of the unique solution is proved for all values of the parameters except for a certain (possibly empty) nowhere dense set of values.  相似文献   

7.
When a fluid flows in a very small surface separation, the very thin boundary layer physically adhering to the solid surface will participate in the flow, while between the two boundary layers is a continuum fluid flow. An analysis is here presented for this multiscale flow. The continuum fluid is treated as Newtonian. The physical adsorbed boundary layer is treated as non-continuum across the layer thickness. The interfacial slippage can occur on the adsorbed layer-solid surface interface, while it is absent on the adsorbed layer-fluid interface. Three flow equations are derived respectively for the two adsorbed layers and the intermediate continuum fluid. They together govern the multiscale flow in such a small surface separation.  相似文献   

8.
A cohesive zone element technique (CZ) is applied to study grain boundary fracture in nano coating layers (see [1]). This goes along with the investigations of the delamination and fracture behavior of the coatings and the substrate interface. The main motivation is to investigate antiadhesive and wear resistant properties of coatings made of ceramics produced by the High Power Pulsed Magnetron Sputtering (HPPMS) technique [2]. Different physical conditions in HPPMS result into different grain morphologies with different mechanical properties. Therefore prediction of fracture and damage in such systems can lead to the optimum choice of process parameters in order to gain the best fracture resistance properties for the coatings. To illustrate the applicability of the model, several simulations with different mechanical and structural properties are performed. The developed CZ element model is capable of modeling the separation, the contact and also the irreversible reloading conditions in different directions [3]. The model is further developed to be applicable for geometrically complex interfaces including different bonding behaviors, with a high robustness. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
A semi-analytical method is developed for solving the dynamic response of transversely isotropic, multilayered, and poroelastic half-spaces with different surface hydraulic conditions and subjected to time-harmonic vertical and horizontal loads buried in the layered half-space. The coupled governing equations of motion are presented in details in terms of the Biot's poroelastodynamic theory via the (u,p) formulation. The cylindrical system of vector functions is introduced to express the unknown primary quantities so that the coupled governing partial differential equations can be reduced and separated into two sets of first-order ordinary differential equations (i.e., the LM- and N-types). A recursive relation for the expansion coefficients among different layers is established by virtue of the stable and efficient dual variable and position method. Making use of the boundary and interface conditions, the fundamental solutions are obtained in terms of the vector-function system. The corresponding physical-domain solutions are then derived via an accurate semi-infinite integral algorithm. The developed fundamental solutions are carefully checked with existing solutions, and numerical examples are further presented to demonstrate the effect of material anisotropy, loading depth, material layering, and surface hydraulic condition on the dynamic response, which should be useful to design engineers. These solutions could be further served as benchmarks for future numerical methods.  相似文献   

10.
In 1961, at A.M.S. Symposium on Convexity, P.C. Hammer proposed the following problem: how many X-ray pictures of a convex planar domain D must be taken to permit its exact reconstruction? Richard Gardner writes in his fundamental 2006 book [4] that X-rays in four different directions would do the job. The present paper points at the possibility that in certain asymptotical sense X-rays in only three different directions can be enough for approximate reconstruction of centrally symmetric convex domains. The accuracy of reconstruction would tend to become perfect in the limit, as the directions of the three X-rays change, all three converging to some given direction. The analysis leading to that conclusion is based on two lemmas of Section 1 and Pleijel type identity for parallel X-rays derived in Sections 2 and 3. These tools together supply a systemof two differential equations with respect to two unknown functions that describe the two branches of the domain boundary D. The system is easily resolved. The solution intended to provide a complete tomography reconstruction of D, happens however to depend on a two dimensional parameter, whose “real value” remains unknown. So tomography reconstruction of D becomes possible if a satisfactory approximation to that unknown “real value” can be found. In the last section a test procedure for the individual candidates for “approximate real value” of the parameter is described. A uniqueness theorem concerning tomography of circular discs is proved.  相似文献   

11.
Motivated by transverse stability issues, we address the time evolution under the KP-II flow of perturbations of a solution which does not decay in all directions, for instance the KdV-line soliton. We study two different types of perturbations: perturbations that are square integrable in R×T and perturbations that are square integrable in R2. In both cases we prove the global well-posedness of the Cauchy problem associated with such initial data.  相似文献   

12.
For a reliable prediction of the mechanical behavior of unidirectional fiber-reinforced composite laminates (FRCL), it is inevitable to take into account various damage and fracture mechanisms. In this work, delamination under arbitrary mixedmode loading conditions is examined in the framework of the finite element method. Delamination is assumed to be caused by failure of the resin-rich area in the interface between two layers of FRCL's. In this work, a cohesive interface elementin terms of natural stress-strain relationships which allows to describe the interlaminar mechanical behavior of FRCL's is introduced. The proposed model prevents the restoration of cohesion in the interface. The interpenetration of the crack faces is avoided by incorporating a simple contact algorithm. A representative numerical example shows the applicability of the proposed concept. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Elliptic interface problems with multi-domains have wide applications in engineering and science. However, it is challenging for most existing methods to solve three-dimensional elliptic interface problems with multi-domains due to local geometric complexity, especially for problems with matrix coefficient and sharp-edged interface. There are some recent work in two dimensions for multi-domains and in three dimensions for two domains. However, the extension to three dimensional multi-domain elliptic interface problems is non-trivial. In this paper, we present an efficient non-traditional finite element method with non-body-fitting grids for three-dimensional elliptic interface problems with multi-domains. Numerical experiments show that this method achieves close to second order accurate in the L norm for piecewise smooth solutions.  相似文献   

14.
The one-step conjugative rearrangement neighborhood of all possible incumbent tours in an n-city single-agent Traveling Salesperson Problem is represented by a transition matrix. Using these matrices and employing group theory and the symmetric group on n letters, we show that all such matrices will fall into three different types: (1) irreducible matrices with one set of tours, (2) irreducible cyclic matrices of period 2 with two distinct sets of tours, and (3) reducible matrices with two equal-sized distinct sets of tours. In addition to giving the required conditions that yield each neighborhood type, we briefly discuss how these results are easily extended to multi-agent traveling salesperson problems and suggest directions for future investigations.  相似文献   

15.
This paper compares the shape of the level sets for two multivariate densities. The densities are positive and continuous, and have the same dependence structure. The density f is heavy-tailed. It decreases at the same rate-up to a positive constant-along all rays. The level sets {f>c} for c0, have a limit shape, a bounded convex set. We transform each of the coordinates to obtain a new density g with Gaussian marginals. We shall also consider densities g with Laplace, or symmetric Weibull marginal densities. It will be shown that the level sets of the new light-tailed density g also have a limit shape, a bounded star-shaped set. The boundary of this set may be written down explicitly as the solution of a simple equation depending on two positive parameters. The limit shape is of interest in the study of extremes and in risk theory, since it determines how the extreme observations in different directions relate. Although the densities f and g have the same copula-by construction-the shapes of the level sets are not related. Knowledge of the limit shape of the level sets for one density gives no information about the limit shape for the other density.  相似文献   

16.
We consider ∇φ interface model on a hard wall. The hydrodynamic large-scale space-time limit for this model is discussed with periodic boundary by Funaki et al. (2000, preprint). This paper studies fluctuations of the height variables around the hydrodynamic limit in equilibrium in one dimension imposing Dirichlet boundary conditions. The fluctuation is non-Gaussian when the macroscopic interface is attached to the wall, while it is asymptotically Gaussian when the macroscopic interface stays away from the wall. Our basic method is the penalization. Namely, we substitute in the dynamics the reflection at the wall by strong drift for the interface when it goes down beyond the wall and show the fluctuation result for such massive ∇φ interface model. Then, this is applied to prove the fluctuation for the ∇φ interface model on the wall.  相似文献   

17.
A mathematical model that describes the joint motion of periodically alternating layers of two isotropic creep materials is considered. It is assumed that all layers are parallel to one of the coordinate planes and the thickness of any two adjacent layers is ε. For this model, the corresponding homogenized model for ε → 0 is constructed, which describes the behavior of a homogeneous creep material.  相似文献   

18.
We have computed the steady, axisymmetric viscous boundary layers on either side of an interface between two immiscible, incompressible fluids that are in rigid body rotation far from the interface. The internal rotational Froude number is assumed small so that the interface may be considered horizontal. An application of our results to the spinup from rest of two immiscible slightly viscous fluids in a vertically mounted cylinder is discussed.  相似文献   

19.
The present paper introduces a new interfacial marker-level set method (IMLS) which is coupled with the Reynolds averaged Navier–Stokes (RANS) equations to predict the turbulence-induced interfacial instability of two-phase flow with moving interface. The governing RANS equations for time-dependent, axisymmetric and incompressible two-phase flow are described in both phases and solved separately using the control volume approach on structured cell-centered collocated grids. The transition from one phase to another is performed through a consistent balance of kinematic and dynamic conditions on the interface separating the two phases. The topological changes of the interface are predicted by applying the level set approach. By fitting a number of interfacial markers on the intersection points of the computational grids with the interface, the interfacial stresses and consequently, the interfacial driving forces are easily estimated. Moreover, the normal interface velocity, calculated at the interfacial markers positions, can be extended to the higher dimensional level set function and used for the interface advection process. The performance of linear and non-linear two-equation kε turbulence models is investigated in the context of the considered two-phase flow impinging problem, where a turbulent gas jet impinging on a free liquid surface. The numerical results obtained are evaluated through the comparison with the available experimental and analytical data. The nonlinear turbulence model showed superiority in predicting the interface deformation resulting from turbulent normal stresses. However, both linear and nonlinear turbulence models showed a similar behavior in predicting the interface deformation due to turbulent tangential stresses. In general, the developed IMLS numerical method showed a remarkable capability in predicting the dynamics of the considered two-phase immiscible flow problems and therefore it can be applied to quite a number of interface stability problems.  相似文献   

20.
Crack penetration through the bimaterial interface of two polymers is investigated numerically. Due to the practical importance of the problem, a crack in a three-layer pipe consisting of a main and two, inner and outer, protective layers is analyzed in this paper. The prime aim is to formulate the conditions under which the crack stays arrested at the interface between the protective layer and the main pipe or penetrates into the interface and causes failure of the main pipe and consequently of the entire pipe system. The crack tip stress field is described by using a generalized stress intensity factor for cases where the crack touches the interface and the stress singularity exponent differs from 1/2. In the case of short-term applications, the stress state on the interface is given simply by a combination of the elastic properties of materials of the main pipe and the protective layers. In long-term applications, the time-dependent properties of the materials can significantly influence the stress state of the interface and can lead to considerable changes in failure conditions. The results presented here may contribute to a more accurate estimation of the residual lifetime of multilayer pipes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号