首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The title complex {[Co(dimb)2(H2O)2]·(NO3)2·(H2O)2}n ( 1 ) (dimb = 1,3‐di(imidazol‐1‐ylmethyl)‐5‐methylbenzene) has been hydrothermally synthesized by the reaction of dimb with Co(NO3)2·6H2O in aqueous solution. The cobalt(II) atoms are linked by bridging dimb ligands to form 2D corrugated and wavy networks containing Co4(dimb)4 macrocyclic motifs. Two neighboring independent layers interlinked each other in a parallel fashion to construct three‐dimensional structure by O–H···O, N–H···O and C–H···O hydrogen bonds. Magnetic measurement shows the weak antiferromagnetic interaction with a one‐dimensional chain model in the range of 5–300 K, with J of –0.68 cm−1.  相似文献   

2.
Two nitrilotriacetate cobalt complexes {[CoK2(NTA)(Hmta)(H2O)3]NO3}n ( 1 ) and [{Co(4,4′‐bpy)2(H2O)4}{Co2(NTA)2(4,4′‐bpy)(H2O)2}] ( 2 ) (NTA = nitrilotriacetate anion, Hmta = hexamethylenetetramine and 4,4′‐bpy = 4,4′‐bipyridine) were prepared and characterized by IR, elemental analysis and single crystal X‐ray diffraction study. The influence of the neutral ancillary ligands on the formation of the complexes with different structures in the Co‐NTA system was discussed. The coordination of NTA and Hmta to Co2+ ions only resulted in the formation of mononuclear [Co(NTA)(Hmta)]? ions which are further connected by K+ ions and water molecules to form a three‐dimensional network. The use of 4,4′‐bpy as ancillary ligand in 2 led to the formation of separate mononuclear [Co(4,4′‐bpy)2(H2O)4]2+ and dinuclear [Co2(NTA)2(4,4′‐bpy)(H2O)2]2? which are further connected by hydrogen bonds to form a supramolecular three‐dimensional network. In these cases it seems to suggest that the addition of neutral ancillary ligand into the Co‐NTA system leads to the formation of lower dimensional structures when the contribution of alkali ions to the structural dimensionality is neglected.  相似文献   

3.
[{C8H12Rh}33‐OH)2]SbF6: A New Organometallic Rhodium Complex with Rh3O2 Core Crystals of C24H38F7O2Rh3Sb ( 3 ) obtained from the crystallisation of 2 from wet solvents consist of [{C8H12Rh}33‐OH)2]+ cations connected with the SbF6 anions via hydrogen bonds. In the cations, the Rh3 faces are bicapped by OH ligands.  相似文献   

4.
By slow evaporation of solutions containing Ln(ClO4)3 (Ln=Pr, Nd, Sm), H5IO6 and an excess of HClO4, crystals of the title compounds could be obtained. Their structures were determined by single‐crystal X‐ray diffraction. The compounds crystallize in the monoclinic crystal system, space group I2/a. They contain two types of periodate ions: octahedral H4IO6 groups and two crystallographically different I2O10 groups, which consist of two edge‐sharing octahedra. These anions coordinate to the cations as bridging groups yielding a three‐dimensional network. Together with some water of crystallization, a coordination number of 9 is achieved around the lanthanide ions with a tri‐capped trigonal prismatic geometry.  相似文献   

5.
IntroductionApplicationoftherareearthcompoundshavebeenfoundinmedicineandagriculture.Sotheremayberareearthcompoundsinpeptideandproteincomplexes.Itisimportanttounderstandmoreclearlythebondingofthelanthanideionsinthecoordinationcompoundswithaminoacids.S…  相似文献   

6.
Supramolecular aspects on Te(OH)6 as substitute for crystal‐water in adenine hydrate complexes and the first disodium ditellurate(VI) are reported. The co‐crystallate [Te(OH)6 · 2 adenine · 4 H2O] ( 1 ) has been prepared in 41% yield from the 1 : 1 mixing of Te(OH)6 with the nitrogenous base adenine. The adduct of infinite stacks of adenine molecules, Te(OH)6 and water not only proves that Te(OH)6 mimicks the role of water in the related hydrate adenine · 3 H2O but also shows that the inclusion of Te(OH)6 raises the number of HO–H and N–HO contacts and therefore increases the distance between the adenine rings to 3.31 Å in 1 in comparison to that in adenine trihydrate (3.22 Å). Additionally, the disodium ditellurate(VI) aggregate {[Te2(O)2(OH)6(ONa)2]2 [NaOH · 12.5 H2O]} ( 2 ) resulted from the reaction of 1 with 2 molar equivalents of aqueous NaOH. Dinuclear 2 represents the first X‐ray diffraction characterized example of a sodium tellurate(VI) constructed from [Te2O4(OH)6]2– dianions.  相似文献   

7.
[Ph2P(O)CH2Im][F3B(μ‐OH)BF3]. First Structural Characterization of the Hexafluoro(μ‐hydroxo)diborate Ion [1] The hexafluoro(μ‐hydroxo)diborate ion has been isolated as it's Ph2P(O)CH2Im salt [Im = 2‐(1, 3, 4, 5‐tetramethylimidazolio)] ( 2 ) through basic hydrolysis of [Ph2P(OBF3)CH2Im]BF4 ( 1 ). The crystal structure of 2 · CH2Cl2 reveals the presence of ion pairs linked by unsymmetrical O‐H‐O hydrogen bonds.  相似文献   

8.
A lanthanide complex [Nd(tcph)(Htcph)(H2O)5] (1) (H2tcph?=?tetrachlorophthalic acid) has been characterized by X-ray single crystal diffraction, elemental analysis, IR, UV-Vis and fluorescence spectra. In the title complex, Nd3+ is coordinated by two tetrachlorophthalic acid ligands in a bidentate chelated pattern. Furthermore, the complex contains infinite chains linked by hydrogen bonds.  相似文献   

9.
Two new two‐dimensional CuII and MnII coordination polymers of 5‐aminobenzene‐1,3‐dicarboxylic acid (abdc) ligand, [Cu(μ4‐abdc)(DMF)]n and {[Mn(μ4‐abdc)(H2O)]·H2O}n, have been synthesized and characterized by elemental analysis and IR‐ spectroscopy. The single crystal X‐ray analyses show that the coordination number in these complexes is six, CuO5Cu and MnO5N. The compounds are structurally diverse and the coordination polymer obtained from copper show significant copper–copper interaction while the manganese coordination polymer shows Mn–Namino bond.  相似文献   

10.
Crystal Structure, Infrared and Raman Spectra of Copper Trihydrogenperiodate Monohydrate, CuH3IO6 · H2O The hitherto unknown compound CuH3IO6 · H2O was studied by X‐ray, IR‐ and Raman spectroscopic methods. The crystal structure was determined by X‐ray single‐crystal studies (space group P212121, Z = 4, a = 532.60(10), b = 624.00(10), c = 1570.8(3) pm, R1 = 1.85%, 1559 unique reflections (I > 2σ(I))). Isolated, meridionally configurated H3IO62– ions are coordinated to the copper ions forming double‐ropes in [100]. These ropes are connected in [010] and [001] by hydrogen bonds. The copper ions possess a square pyramidal co‐ordination with the hydrate H2O on top. The infrared and Raman spectra as well as group theoretical treatment are presented and discussed with respect to the strength of the hydrogen bonds and the co‐ordination of the CuO5(+1) polyhedra and the H3IO62– ions at the C1 lattice sites. The hydrogen bonds of the H2O molecules and H3IO62– ions (HO–H…O–IO5H3 and H2IO5O–H…O–IO5H3) greatly differ in strength, as shown from both the respective O…O distances: 282.6 and 298.6 pm (H2O), and 258.8, 259.7, and 270.9 pm (H3IO62–) and the OD stretching modes of isotopically dilute samples: 2498 and 2564 cm–1 (90 K) (HDO), and 1786, 2024, and 2188 cm–1 (H2DIO62–). The IO stretching modes of the H3IO62– ions (696–788 cm–1 and 555–658 cm–1, 295 K) display the different strength of the respective I–O and I–O(H) bonds (rI–O: 181.1–188.3 pm and 189.2–194.5 pm).  相似文献   

11.
12.
The crystal of the N‐isopropyl‐iminodiacetic acid ( 1 ) consists of a 3D H‐bonded framework where the zwitterion (H2iPIDA±) is intra‐stabilized by one N+‐H···O interaction and both carboxyl are half‐protonated and involved in linear O‐H···O inter‐molecular bridges of 2.46 Å. The mixed‐ligand complexes [Cu(iPIDA)(H2?im)(H2O)]·3H2O ( 2 ) and [Cu(iPIDA)(H5?im)]n ( 3 ) have also been synthesized and studied by thermal, spectral, magnetic and X‐ray diffraction methods. Both complexes exhibit a square base pyramidal coordination, type 4+1. Compound 3 is the less steric hindered 'remote' isomer, with H5?im instead of H4?im.  相似文献   

13.
Acidic Sulfates of Neodymium: Synthesis and Crystal Structure of (H5O2)(H3O)2Nd(SO4)3 and (H3O)2Nd(HSO4)3SO4 Light violett single crystals of (H5O2)(H3O)2 · Nd(SO4)3 are obtained by cooling of a solution prepared by dissolving neodymium oxalate in sulfuric acid (80%). According to X‐ray single crystal investigations there are H3O+ ions and H5O2+ ions present in the monoclinic structure (P21/n, Z = 4, a = 1159.9(4), b = 710.9(3), c = 1594.7(6) pm, β = 96.75(4)°, Rall = 0.0260). Nd3+ is nine‐coordinate by oxygen atoms. The same coordination number is found for Nd3+ in the crystal structure of (H3O)2Nd(HSO4)3SO4 (triclinic, P1, Z = 2, a = 910.0(1), b = 940.3(1), c = 952.6(1) pm, α = 100.14(1)°, β = 112.35(1)°, γ = 105.01(1)°, Rall = 0.0283). The compound has been prepared by the reaction of Nd2O3 with chlorosulfonic acid in the presence of air. In the crystal structure both sulfate and hydrogensulfate groups occur. In both compounds pronounced hydrogen bonding is observed.  相似文献   

14.
Nd(S2O7)(HSO4): The First Disulfate of a Rare Earth Element Light violett single crystals of Nd(S2O7)(HSO4) have been obtained by the reaction of Nd2O3 and oleum (30% SO3) at 200 °C in sealed glass ampoules. The crystal structure (monoclinic, P21/n, Z = 4, a = 857.8(1), b = 1061.0(2), c = 972.4(1) pm, β = 99.33(2)°) contains Nd3+ in eightfold coordination of oxygen atoms which belong to three HSO4 ions and four S2O72– groups. One of the latter acts as bidentate ligand. Hydrogen bonding is observed between the H atom of the HSO4 ion and the non‐coordinating O atom of the S2O72– group.  相似文献   

15.
Zinc Iodates – Infrared and Raman Spectra, Crystal Structure of Zn(IO3)2 · 2 H2O The zinc iodates Zn(IO3)2 · 2 H2O and Zn(IO3)2 as well as α‐Co(IO3)2 · 2 H2O were studied by X‐ray, IR‐ and Raman spectroscopic methods. The crystal structure of the dihydrate, which is isostructural with the respective cobalt compound, was determined by X‐ray single‐crystal studies (space group P1, Z = 2, a = 490,60(4), b = 667,31(5), c = 1088,85(9) pm, α = 98,855(6), β = 91,119(7), and γ = 92,841(6)°, R1 = 2,55%, 2639 unique reflections I > 2σ(I)). Transconfigurated Zn(IO3)4(H2O)2 octahedra are threedimensionally connected via common IO3 ions parallel to [001] and hydrogen bonds parallel to [100] and [010], respectively. Anhydrous Zn(IO3)2 crystallizes in space group P21 (Z = 2) with a = 548,9(2), b = 512,4(1), c = 941,8(2) pm, and β = 90,5(3)°. The structure of Zn(IO3)2 is a monoclinically distorted variant of the structures of β‐Ni(IO3)2 (space group P63) and Co(IO3)2 (P3). The O–H … O–IO2 hydrogen bonds of the crystallographically different H2O molecules of the dihydrates (νOD (OD stretching modes of isotopically dilute samples) 2430, 2415, 2333 and 2300 cm–1, Zn(IO3)2 · 2 H2O, 90 K) are examples to the matter of fact that O … O distances are only a bad measure for the strength of hydrogen bonds. The infrared and Raman spectra as well as a group theoretical treatment are presented and discussed with respect to mutual exclusion principle (possible space groups), the strength of the hydrogen bonds and the distortion of the IO3 ions at the C1 lattice sites.  相似文献   

16.
The complexes cis‐[SnCl4(H2O)2]·2H2O ( 1 ), [Sn2Cl6(OH)2(H2O)2]·4H2O ( 3 ), and [HL][SnCl5(H2O)]·2.5H2O ( 4 ) were isolated from a CH2Cl2 solution of equimolar amounts of SnCl4 and the ligand L (L=3‐acetyl‐5‐benzyl‐1‐phenyl‐4, 5‐dihydro‐1, 2, 4‐triazine‐6‐one oxime, C18H18N4O2) in the presence of moisture. 1 crystallizes in the monoclinic space group Cc with a = 2402.5(1) pm, b = 672.80(4) pm, c = 1162.93(6) pm, β = 93.787(6)° and Z = 8. 4 was found to crystallize monoclinic in the space group P21, with lattice parameters a = 967.38(5) pm, b = 1101.03(6) pm, c = 1258.11(6) pm, β = 98.826(6)° and Z = 2. The cell data for the reinvestigated structures are: [SnCl4(H2O)2]·3H2O ( 2 ): a = 1227.0(2) pm, b = 994.8(1) pm, c = 864.0(1) pm, β = 103.86(1)°, with space group C2/c and Z = 4; 3 : a = 961.54(16) pm, b = 646.29(7) pm, c = 1248.25(20) pm, β = 92.75(1)°, space group P21/c and Z = 4.  相似文献   

17.
Pale pink crystals of Nd2(SeO3)2(SeO4) · 2H2O were synthesized under hydrothermal conditions from H2SeO3 and Nd2O3 at about 200 °C. X‐ray diffraction on powder and single‐crystals revealed that the compound crystallizes with the monoclinic space group C 2/c (a = 12.276(1) Å, b = 7.0783(5) Å, c = 13.329(1) Å, β = 104.276(7)°). The crystal structure of Nd2(SeO3)2(SeO4) · 2H2O is an ordered variant of the corresponding erbium compound. Eight oxygen atoms coordinate the NdIII atom in the shape of a bi‐capped trigonal prism. The oxygen atoms are part of pyramidal (SeIVO3)2? groups, (SeVIO4)2? tetrahedra and water molecules. The [NdO8] polyhedra share edges to form chains oriented along [010]. The selenate ions link these chains into layers parallel to (001). The layers are interconnected by the selenite ions into a three‐dimensional framework. The dehydration of Nd2(SeO3)2(SeO4) · 2H2O starts at 260 °C. The thermal decomposition into Nd2SeO5, SeO2 and O2 at 680 °C is followed by further loss of SeO2 leaving cubic Nd2O3.  相似文献   

18.
A layer silicate‐like zinc(II) benzimidazolate polymer {[Zn2(Bim)3(OH)(H2O)]·(DMF)(H2O)3} ( 1 ) was synthesized at room temperature and characterized with X‐ray single‐crystallography: Monoclinic, space group C2/m (No.12), a = 10.423(3) Å, b = 17.416(6) Å, c = 16.583(5) Å, β = 92.698(4), V = 3006.8(17) Å3.  相似文献   

19.
A polymeric VIV‐Cd compound, {(NH4)2[(VIVO)22‐O)(nta)2Cd(H2O)2]·H2O}n (H3nta = nitrilotriacetic acid), has been prepared and characterized by single‐crystal X‐ray diffraction. The compound crystallizes in the monoclinic space group C2/c with a = 17.3760(2) Å, b = 8.0488(1) Å, c = 17.3380(2) Å, β = 107.9690(10)°, V = 2306.55(5) Å3, Z = 4, and R1 = 0.0303 for 1958 observed reflections. The structure exhibits a heterometallic three‐dimensional network formed by polymeric [(VIVO)22‐O)(nta)2Cd(H2O)2]2? anions.  相似文献   

20.
The title compound, {[Cu(2,2'-bipy)(C7H4O5S)(H2O)2](H2O}n (2,2'-bipy = 2,2'- bipyridine), was synthesized by the hydrothermal reaction of Cu(NO3)2(3H2O, 2,2'-bipyridine and 2-sulphobenzoic acid, and structurally characterized by single-crystal X-ray diffraction analysis. The crystal is of triclinic, space group P with a = 9.21(3), b = 10.17(3), c = 10.77(3) (A), α = 77.017(16), β = 89.80(8), γ = 68.46(7)°, V = 911(5) (A)3, Z = 2, (D/s)max = 0.001, Mr = 473.94, Dc = 1.728 g/cm3, μ(MoKα) = 1.365 mm-1, F(000) = 486, the final R = 0.0246 and wR = 0.0628 for 3809 observed reflections with I > 2σ(I). The mononuclear crystal structure extends into a two-dimensional net- work via hydrogen-bonding interactions and a three-dimensional framework is further formed by means of π-π stacking interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号