首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four new lanthanide complexes, [Nd(4-Pyta)3(H2O)2] n (1), [Ce(4-Pyta)3(H2O)2] n (2), [Eu(4-Pyta)3(H2O)2] n (3) and [Gd(4-Pyta)3(H2O)2] n (4), have been obtained from reaction of lanthanide(III) nitrate with 4-Pyta (4-pyridylthioacetate) in water. Their structures were characterized by elemental analysis, infrared spectroscopy and single-crystal X-ray diffraction. The crystals belong to triclinic, space group P 1 and all complexes exhibit one-dimensional chains that arrange to form a three-dimensional supramolecular architecture by hydrogen bonds between the chains.  相似文献   

2.
Polycrystalline Ba2LnSbO6 (Ln = Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) are cubic, perovskite-type compounds, space group Fm3m (No. 225), Z = 4, with a values from a = 8.544(2) Å for Ba2NdSbO6 to a = 8.368(1) Å for Ba2YbSbO6. X-ray diffraction data for all the compounds and the results of magnetic measurements for two of them are given.  相似文献   

3.
Synthesis and Crystal Structures of Lanthanide Bromide Thiosilicates Ln3Br[SiS4]2 (Ln = La, Ce, Pr, Nd, Sm, Gd) Single crystals of the bromide—thiosilicates Ln3Br[SiS4]2 were prepared by reaction of lanthanide metal (Ln = La, Ce, Pr, Nd, Sm, Gd), sulfur, silicon and bromine in quartz glass tubes. The thiosilicates crystallize in the monoclinic spacegroup C2/c (Z = 4) isotypically to the iodide analogues Ln3I(SiS4)2 and the A—type chloride—oxosilicates Ln3Cl[SiO4]2 with the following lattice constants: La3Br[SiS4]2: a = 1583.3(4) pm, b = 783.0(1) pm, c = 1098.2(3) pm, β = 97.33(3)° Ce3Br[SiS4]2: a = 1570.4(3) pm, b = 776.5(2) pm, c = 1092.2(2) pm, β = 97.28(2)° Pr3Br[SiS4]2: a = 1562.6(3) pm, b = 770.1(2) pm, c = 1088.9(2) pm, β = 97.50(2)° Nd3Br[SiS4]2: a = 1561.4(4) pm, b = 766.0(1) pm, c = 1085.3(2) pm, β = 97.66(3)° Sm3Br[SiS4]2: a = 1555.4(3) pm, b = 758.5(2) pm, c = 1079.9(2) pm, β = 98.28(2)° Gd3Br[SiS4]2: a = 1556.5(3) pm, b = 750.8(1) pm, c = 1074.5(2) pm, β = 99.26(2)° In the crystal structures the bromide ions form chains along [001] with trigonal planar coordination by lanthanide cations, while the [SiS4]4‐—building units display isolated distorted tetrahedra.  相似文献   

4.
Fluoroplatinates(IV) of the Lanthanides LnF[PtF6] (Ln = Pr, Sm, Gd, Tb, Dy, Ho, Er) For the first time fluorides LnF[PtF6] (Ln = Pr, Sm, Gd, Tb, Dy, Ho, Er), all yellow have been obtained. From single crystal data they crystallize monoclinic, space group P21/n?C (No. 14), Z = 4, Pr: a = 1 125.77(19) pm, b = 559.04(7) pm, c = 910.27(17) pm, β = 107.29(1)°; Sm: a = 1 114.63(31) pm, b = 552.70(12) pm, c = 898.02(20) pm, β = 107.24(2)°; Gd: a = 1 112.12(15) pm, b = 551.22(7) pm, c = 891.99(11) pm, β = 107.09(1)°; Tb (Powder data): a = 1 108.88(20) pm, b = 552.71(9) pm, c = 889.56(16) pm, β = 107.30(1)°; Dy: a = 1 100.28(23) pm, b = 547.77(8) pm, c = 882.41(13) pm, β = 107.32(1); Ho: a = 1 099.11(16) pm, b = 546.16(7) pm, c = 879.45(15) pm, β = 107.34(1)°; Er: a = 1 095.10(16) pm, b = 544.82(10) pm, c = 874.85(14) pm, β = 107.37(1)°.  相似文献   

5.
New ternary phosphides Ln25Ni49P33 (Ln = Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er) have been synthesized by arc melting of pure components. Crystal structure has been determined for Sm25Ni49P33 using X‐ray powder diffraction data and the Rietvelt method: P6m2, a = 22.096(4), c = 3.8734(9) Å, R = 0.096. Crystal structure of Sm25Ni49P33 is of a new type and belongs to large family of ternary compounds with trigonal‐prismatic coordination of the smallest size atoms and metal to nonmetal ratio equal or close to 2 : 1. It is a member of homologous subseries of the compounds with unit cell contents described by general chemical formula R M X . Lattice parameters of the isotypic compounds Ln25Ni49P33 have been refined using X‐ray powder diffraction data.  相似文献   

6.
Synthesis and Crystal Structures of Ln3I(SiS4)2 (Ln = Pr, Nd, Sm, Tb) Single crystals of Ln3I(SiS4)2 were prepared by a two‐step reaction of lanthanide metal, sulfur, silicon and iodine in the ratio 1 : 3.25 : 1 : 0.33 in quartz glass tubes. The thiosilicates crystallize in the monoclinic space group C 2/c (Z = 4) isotypic to Ce3I(SiS4)2 [1]. In the crystal structures the iodide ions form chains along [001] with trigonal coordination by lanthanide ions.  相似文献   

7.
Five new compounds of the BaNiNd2O5-type with the rare earth elements Sm, Gd, Ho, Er, Tm are prepared and examined by X-ray single crystal technique. The atomic parameters are refined by least-square methods. The crystal chemical differences in the surrounding of rare earth ions in BaMLn 2O5-compounds (M=Pt, Pd, Cu, Ni) are discussed.
  相似文献   

8.
The title structures of KScS2 (potassium scandium sulfide), RbScS2 (rubidium scandium sulfide) and KLnS2 [Ln = Nd (potassium neodymium sufide), Sm (potassium samarium sulfide), Tb (potassium terbium sulfide), Dy (potassium dysprosium sulfide), Ho (potassium holmium sulfide), Er (potassium erbium sulfide), Tm (potassium thulium sulfide) and Yb (potassium ytterbium sulfide)] are either newly determined (KScS2, RbScS2 and KTbS2) or redetermined. All of them belong to the α‐NaFeO2 structure type in agreement with the ratio of the ionic radii r3+/r+. KScS2, the member of this structural family with the smallest trivalent cation, is an extreme representative of these structures with rare earth trivalent cations. The title structures are compared with isostructural alkali rare earth sulfides in plots showing the dependence of several relevant parameters on the trivalent cation crystal radius; the parameters thus compared are c, a and c/a, the thicknesses of the S—S layers which contain the respective constituent cations, the sulfur fractional coordinates z(S2−) and the bond‐valence sums.  相似文献   

9.
The crystal structures of a broad series of anhydrous Ln(hfac)(3)(monoglyme) complexes, prepared in moderate to high yield, are presented: hfac = 1,1,1,5,5,5-hexafluoroacetylacetonato-; Ln = La, Ce, Pr, Sm, Eu, Gd, Tb, Dy, Er, Tm. This study contradicts the general assumption that monoglyme is too small a polyether to act as a partitioning agent displacing coordinated water on the larger lanthanide(III) ions. The structures of an intermediate La(hfac)(3)(monoglyme)(2) species and the hydrated Ce(hfac)(3)(monoglyme)(H(2)O) species are also included. The crystallographic evidence presented herein is supplemented by other characterization techniques (melting point, IR, etc.) and trends are delineated.  相似文献   

10.
11.
Polycrystalline boratotungstates of composition Ln3BWO9 (Ln = Pr, Nd, Sm, Gd, Tb, Dy) are prepared by solid-phase synthesis and structurally studied. The structures are refined using the Rietveld method for hexagonal space group P63 (Z = 2). The boratotungstate structures are frameworks. The rare-earth cations in the structure are coordinated by an array of nine oxygen atoms (three oxygen atoms from borato groups BO3 and six from WO6 polyhedra). The nature of the optical nonlinearity in the hexagonal boratotungstates Ln3BWO9 is a direct consequence of the acentricity of both the tungstate and the rare-earth polyhedra in the structure. Dimorphism is discovered in polycrystalline La3BWO9.  相似文献   

12.
We have discovered room temperature photoluminescence in Sm3+ and Pr3+ dithiocarbamate complexes. Surprisingly, these complexes exhibit more intense emission than those of the Eu3+, Tb3+, and Dy3+ analogues. The electronic absorption, excitation, and emission spectra are reported for the complexes [Ln(S2CNR2)3L] and NH2Et2[Ln(S2CNEt2)4], where Ln = Sm, Pr; R = ethyl, ibutyl, benzyl; and L = 1,10-phenanthroline, 2,2'-bipyridine, and 5-chloro-1,10-phenanthroline. The lowest ligand-localized triplet energy level (T1) of the complexes are determined from the phosphorescence spectra of analogous La3+ and Gd3+ chelates. The luminescence decay curves were measured to determine the excited-state lifetimes for the Pr3+ and Sm3+ complexes. X-ray crystal structures of Sm(S2CNiBu2)3phen, Pr(S2CNEt2)3phen, and Pr(S2CNiBu2)3phen are also reported.  相似文献   

13.
Eleven new quaternary rare-earth tellurides, CsLnZnTe3 (Ln=La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Y), were prepared from solid-state reactions at 1123 K. These isostructural materials crystallize in the layered KZrCuS3 structure type in the orthorhombic space group Cmcm. The structure is composed of LnTe6 octahedra and ZnTe4 tetrahedra that share edges to form [LnZnTe3] layers. These layers stack perpendicular to [010] and are separated by layers of face- and edge-sharing CsTe8 bicapped trigonal prisms. There are no Te-Te bonds in the structure of these CsLnZnTe3 compounds so the formal oxidation states of Cs/Ln/Zn/Te are 1+/3+/2+/2-. Optical band gaps of 2.13 eV for CsGdZnTe3 and 2.12 eV for CsTbZnTe3 were deduced from single-crystal optical absorption measurements. A first-principles calculation of the density of states and the frequency-dependent optical properties was performed on CsGdZnTe3. The calculated band gap of 2.1 eV is in good agreement with the experimental value. A quadratic fit for the lanthanide contraction of the Ln-Te distance is superior to a linear one if the closed-shell atom is included.  相似文献   

14.
The reaction of the lanthanide oxides, bromotrimethylsilane and water in THF resulted in [LnBr3(THF)x]. If digylme (diglyme = diethylen glicol dimethyl ether) was added to these reaction mixtures in the mole ratio n(Ln): n(diglyme) ~ 1: 2.2 – 3, the ionic complexes [LnBr2(diglyme)2][LnBr4(diglyme)] (Ln = La ( 1 ), Sm ( 2 ), Eu ( 3 )) were isolated. Crystal structures of the two new complexes, 2 and 3 , which were recrystallized from dichloromethane, were determined. The immediate reaction of the complexes 1 and 2 with HMPA (HMPA = hexamethylphosphoramide) in toluene resulted in [LnBr2(HMPA)4]Br·0.5H2O (Ln = La( 4 ), Sm ( 5 )).  相似文献   

15.
By slow evaporation of solutions containing Ln(ClO4)3 (Ln=Pr, Nd, Sm), H5IO6 and an excess of HClO4, crystals of the title compounds could be obtained. Their structures were determined by single‐crystal X‐ray diffraction. The compounds crystallize in the monoclinic crystal system, space group I2/a. They contain two types of periodate ions: octahedral H4IO6 groups and two crystallographically different I2O10 groups, which consist of two edge‐sharing octahedra. These anions coordinate to the cations as bridging groups yielding a three‐dimensional network. Together with some water of crystallization, a coordination number of 9 is achieved around the lanthanide ions with a tri‐capped trigonal prismatic geometry.  相似文献   

16.
Li XZ  Wang C  Chen XL  Li H  Jia LS  Wu L  Du YX  Xu YP 《Inorganic chemistry》2004,43(26):8555-8560
A novel borate compound YBa(3)B(9)O(18) has crystallized in a melt of BaYB(9)O(16). Single-crystal X-ray diffraction measurements reveal that YBa(3)B(9)O(18) adopts a hexagonal space group P6(3)/m with cell parameters of a = 7.1761(6) A and c = 16.9657(6) A. The structure is made up of the planar B(3)O(6) groups parallel to each other along the (001) direction, regular YO(6) octahedra, and irregular BaO(6) and BaO(9) polyhedra to form an analogue structure of beta-BaB(2)O(4). A series of isostructural borate compounds RBa(3)B(9)O(18) (R = Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) were prepared by powder solid-state reactions. The DTA and TGA curves of YBaB(9)O(16) show an obvious weight loss at about 955 degrees C associated with a decomposition into YBO(3), B(2)O(3), and YBa(3)B(9)O(18) due to its incongruent melting behavior. The DTA and TGA curves of YBa(3)B(9)O(18) show that it is chemically stable and a congruent melting compound. A comparison of the structures of YBa(3)B(9)O(18) and beta-BaB(2)O(4) is presented.  相似文献   

17.
The reaction of triethanolamine (teaH(3)) with [Fe(III)(3)O(O(2)CCH(3))(6)(H(2)O)(3)]Cl·6H(2)O and Ln(NO(3))(3)·6H(2)O in acetonitrile yields [Fe(16)Ln(4)(tea)(8)(teaH)(12)(μ-O(2)CCH(3))(8)](NO(3))(4)·16H(2)O·xMeCN (Ln = Sm (1), Eu (2), Gd (3), Tb (4), Dy (5), Ho (6); x = 10 or 11). These 20-membered metallo-ring complexes are the largest such single-stranded oxygen-bridged rings so far reported. The structure is stabilised by two of the acetate ligands, which form anti,anti-bridges across the centre of the ring, pinching the ring and giving it rigidity. The magnetic properties are dominated by the antiferromagnetic couplings between the Fe(III) centres. Although the Fe(2) and Fe(6) sub-chains within the ring are fully spin-compensated at low temperatures with S(subchain) = 0, coupling between the Gd(III) cations and the Fe(III) centres at the ends of the sub-chains (in 3) results in a pinning of the lanthanide spins. The (57)Fe M?ssbauer spectra of 3 and 5 obtained at low temperatures are consistent with the presence of Fe(III) intracluster strong antiferromagnetic coupling. The applied field spectrum for 3 reveals no magnetic hyperfine interaction apart from that of the nucleus with the applied field, while the one for 5 is a superposition of three subspectra which show contributions from each of the peripheral as well as from the central iron sites.  相似文献   

18.
Synthesis and Crystal Structure of Ln2SeSiO4 (Ln = Sm, Dy, Ho) and Sm2TeSiO4 Single crystals of Ln2SeSiO4 (Ln = Sm, Dy, Ho) could be prepared by the reaction of lanthanide metal, selenium and iodine in the ratio 1 : 1 : 2.5 and subsequent reaction with quartz glass powder. Black crystals of Sm2TeSiO4 have been obtained in chemical transport experiments of SmTe2 with iodine in evacuated quartz glass ampoules as by‐products. All chalcogenide silicates crystallize orthorhombically with the space group Pbcm (Z = 4) and the lattice constants: Sm2SeSiO4: a = 612.6(1) pm, b = 709.0(1) pm, c = 1094.0(2) pm; Dy2SeSiO4: a = 603.6(1) pm, b = 696.4(1) pm, c = 1081.2(2) pm; Ho2SeSiO4: a = 601.0(1) pm, b = 693.6(1) pm, c = 1078.6(2) pm; Sm2TeSiO4: a = 623.82(8) pm, b = 713.06(7) pm, c = 1112.26(11) pm. The crystal structure is built up of alternating Ln(Se/Te) and LnSiO4 sheets parallel (001).  相似文献   

19.
Six new ethylthioethylcyclopentadienyl containing organolanthanide complexes CpLnCl [Ln=Gd (1), Dy (2)] and Cp2LnCpTh [Cp=C5H5, Ln=Yb (3), Sm (4), Dy (5), Y (6)] were synthesized by the reaction of ethylthioethyl‐cyclopentadienyl (CpTh) sodium salt with LnCl3 or Cp2LnCl in THF. Complexes 1–6 were characterized by elemental analyses, infrared and mass spectroscopies. The molecular structures of complexes 1–3 were also determined by the X‐ray single crystal diffraction. The results show that the side‐chain sulfur atom on the ethylthioethylcyclopentadienyl ring can form intramolecular chelating coordination to the central lanthanide ion, improving the stability of organolanthanide complexes and reducing the number of coordinated THF molecules.  相似文献   

20.
The synthesis process and crystal structure evolution for a family of stoichiometric layered rare-earth hydroxides with general formula Ln(8)(OH)(20)Cl(4) x nH(2)O (Ln = Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Y; n approximately 6-7) are described. Synthesis was accomplished through homogeneous precipitation of LnCl(3) x xH(2)O with hexamethylenetetramine to yield a single-phase product for Sm-Er and Y. Some minor coexisting phases were observed for Nd(3+) and Tm(3+), indicating a size limit for this layered series. Light lanthanides (Nd, Sm, Eu) crystallized into rectangular platelets, whereas platelets of heavy lanthanides from Gd tended to be of quasi-hexagonal morphology. Rietveld profile analysis revealed that all phases were isostructural in an orthorhombic layered structure featuring a positively charged layer, [Ln(8)(OH)(20)(H(2)O)(n)](4+), and interlayer charge-balancing Cl(-) ions. In-plane lattice parameters a and b decreased nearly linearly with a decrease in the rare-earth cation size. The interlamellar distance, c, was almost constant (approximately 8.70 A) for rare-earth elements Nd(3+), Sm(3+), and Eu(3+), but it suddenly decreased to approximately 8.45 A for Tb(3+), Dy(3+), Ho(3+), and Er(3+), which can be ascribed to two different degrees of hydration. Nd(3+) typically adopted a phase with high hydration, whereas a low-hydration phase was preferred for Tb(3+), Dy(3+), Ho(3+), Er(3+), and Tm(3+). Sm(3+), Eu(3+), and Gd(3+) samples were sensitive to humidity conditions because high- and low-hydration phases were interconvertible at a critical humidity of 10%, 20%, and 50%, respectively, as supported by both X-ray diffraction and gravimetry as a function of the relative humidity. In the phase conversion process, interlayer expansion or contraction of approximately 0.2 A also occurred as a possible consequence of absorption/desorption of H(2)O molecules. The hydration difference was also evidenced by refinement results. The number of coordinated water molecules per formula weight, n, changed from 6.6 for the high-hydration Gd sample to 6.0 for the low-hydration Gd sample. Also, the hydration number usually decreased with increasing atomic number; e.g., n = 7.4, 6.3, 7.2, and 6.6 for high-hydration Nd, Sm, Eu, and Gd, and n = 6.0, 5.8, 5.6, 5.4, and 4.9 for low-hydration Gd, Tb, Dy, Ho, and Er. The variation in the average Ln-O bond length with decreasing size of the lanthanide ions is also discussed. This family of layered lanthanide compounds highlights a novel chemistry of interplay between crystal structure stability and coordination geometry with water molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号