首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chiral Half‐sandwich Pentamethylcyclopentadienyl Rhodium(III) and Iridium(III) Complexes with Schiff Bases from Salicylaldehyde and α‐Amino Acid Esters [1] A series of diastereoisomeric half‐sandwich complexes with Schiff bases from salicylaldehyde and L‐α‐amino acid esters including chiral metal atoms, [(η5‐C5H5)(Cl)M(N,O‐Schiff base)], has been obtained from chloro bridged complexes [(η5‐C5Me5)(Cl)M(μ‐Cl)]2 (M = Rh, Ir). Abstraction of chloride from these complexes with Ag[BF4] or Ag[SO3CF3] affords the highly sensitive compounds [(η5‐C5Me5)M(N,O‐Schiff base]+X? (M = Rh, Ir; X = BF4, CF3SO3) to which PPh3 can be added under formation of [(η5‐C5Me5)M(PPh3)(N,O‐Schiff base)]+X?. The diastereoisomeric ratio of the complexes ( 1 ‐ 7 and 11 ‐ 12 ) has been determined from NMR spectra.  相似文献   

2.
The Dihydridoiridium(III) Complex [IrH2Cl(P i Pr3)2] as a Molecular Building Block for Unsymmetrical Binuclear Rhodium–Iridium and Iridium–Iridium Compounds The title compound [IrH2Cl(PiPr3)2] ( 3 ) reacts with the chloro‐bridged dimers [RhCl(PiPr3)2]2 ( 1 ) and [IrCl(C8H14)(PiPr3)]2 ( 5 ) by cleavage of the Cl‐bridges to give the unsymmetrical binuclear complexes 4 and 6 with Rh(μ‐Cl)2Ir and Ir(μ‐Cl)2Ir as the central building block. The reactions of 3 with the bis(cyclooctene) and (1,5‐cyclooctadiene) compounds [MCl(C8H14)2]2 ( 7 , 8 ) and [MCl(η4‐C8H12)]2 ( 9 , 10 ) (M = Rh, Ir) occur analogously and afford the rhodium(I)‐iridium(III) and iridium(I)‐iridium(III) complexes 11 – 14 in 70–80% yield. Treatment of [(η4‐C8H12)M(μ‐Cl)2IrH2(PiPr3)2] ( 13 , 14 ) with phenylacetylene leads to the formation of the substitution products [(η4‐C8H12)M(μ‐Cl)2IrH(C≡CPh)(PiPr3)2] ( 15 , 16 ) without changing the central molecular core. Similarly, the compound [(η4‐C8H12)Rh(μ‐Br)2IrH(C≡CPh)(PiPr3)2] ( 18 ) has been prepared; it was characterized by X‐ray crystallography.  相似文献   

3.
The reactions of Cp*M(PMe3)Cl2 (M = Rh ( 1a ), Ir ( 1b )) with (NEt4)2[WS4] led to the heterodimetallic sulfido‐bridged complexes Cp*M(PMe3)[(μ‐S)2WS2] (M = Rh ( 2a ), Ir ( 2b )), whereas the dimers [Cp*MCl(μ‐Cl)]2 (M = Rh ( 4a ), Ir ( 4b )) reacted with (NEt4)2[WS4) to give the known trinuclear compounds [Cp*M(Cl)]2(μ‐WS4) (M = Rh ( 5a ), Ir ( 5b )). Hydrolysis of the terminal W=S bonds converts 2a, b into Cp*M(PMe3)[(μ‐S)2WO2] (M = Rh ( 3a ), Ir ( 3b )). Salts of a heterodimetallic anion, A[CpMo(I)(NO)(WS4)] ( 6 ) (A+ = NEt4+, NPh4+) were obtained by reactions of [CpMo(NO)I2]2 with tetrathiotungstates, A2[WS4]. The complexes were characterized by IR and NMR (1H, 13C, 31P) spectroscopy, and the X‐ray crystallographic structure of Cp*Rh(PMe3)[(μ‐S)2WS2] ( 2a ) has been determined. The bond lengths and angles in the coordinations spheres of Rh and W in 2a (Rh···W 288.5(1) pm) are compared with related complexes containing terminal [WS42—] chelate ligands.  相似文献   

4.
Six novel organometallic half sandwich complexes [(η5‐C5Me5)M(L1–3)Cl]Cl.2H2O were synthesized using [{(η5‐C5Me5)M(μ‐Cl)Cl2], where M = Ir (III)/Rh (III) and L1–3 = three pyridyl pyrimidine based ligands; and characterized by NMR, Infra‐red spectroscopy, conductance, elemental and thermal analysis. The complex‐DNA binding mode and/or strength evaluated using absorption titration, electrochemical studies and hydrodynamic measurement proposed intercalative binding mode, which was also confirmed by molecular docking study. Differential pulse voltammetry and cyclic voltammetry studies indicated an alteration in oxidation and reduction potentials of complexes (M+4/M+3) in presence of CT‐DNA. The metal complexes can cleave plasmid DNA as proposed in gel electrophoretic analysis. The LC50 values of complexes evaluated on brine shrimp suggested their potent cytotoxic nature.  相似文献   

5.
Piano‐stool‐shaped platinum group metal compounds, stable in the solid state and in solution, which are based on 2‐(5‐phenyl‐1H‐pyrazol‐3‐yl)pyridine ( L ) with the formulas [(η6‐arene)Ru( L )Cl]PF6 {arene = C6H6 ( 1 ), p‐cymene ( 2 ), and C6Me6, ( 3 )}, [(η6‐C5Me5)M( L )Cl]PF6 {M = Rh ( 4 ), Ir ( 5 )}, and [(η5‐C5H5)Ru(PPh3)( L )]PF6 ( 6 ), [(η5‐C5H5)Os(PPh3)( L )]PF6 ( 7 ), [(η5‐C5Me5)Ru(PPh3)( L )]PF6 ( 8 ), and [(η5‐C9H7)Ru(PPh3)( L )]PF6 ( 9 ) were prepared by a general method and characterized by NMR and IR spectroscopy and mass spectrometry. The molecular structures of compounds 4 and 5 were established by single‐crystal X‐ray diffraction. In each compound the metal is connected to N1 and N11 in a k2 manner.  相似文献   

6.
Syntheses of the array of heterobimetallic complexes [(OC)3M(μ‐PPh2)2(μ‐OC(CHMe(CH2)2PPh2)RhL], M = Cr, Mo, W, L = tBuNC, are described, extending the previous study of the counterpart array for L = CO. A single crystal X‐ray structure determination is reported for the M = Mo adduct, enabling comparison with its previously reported L = CO counterpart, for which an improved redetermination is also reported. In the present complex the tBuNC ligand is found to be much more weakly bound (Rh‐C 2.026(5) Å) than the carbonyl group it displaces (Rh‐C 1.945(2) Å) with concomitant minor impact on the remainder of the rhodium ambience.  相似文献   

7.
Metal Complexes of Biologically Important Ligands. XCV. η5-Pentamethylcyclopentadienyl Rhodium, Iridium, η6- Benzene Ruthenium, and Phosphine Palladium Complexes of Proline Methylester and Proline Amide Proline methylester (L1) and proline amide (L2) give with the chloro bridged complexes [(η5 -C5Me5)MCl2]2 (M ? Rh, Ir), [(η6 -benzene)RuCl2]2 and [Et3PPdCl2]2 N and N,O coordinated compounds: (η5 -C5Me5)M(Cl2)L1 ( 1, 2 M ? Rh, Ir), [(η5-C5Me5) Rh(Cl)(L2)]+Cl? ( 5 ), [(η6- C6Me6) Ru(Cl)(L2)]+Cl? ( 6 ), [(η6-p-cymene)Ru(Cl)(L2)]+Cl? ( 7 ), [(eta;5-C5Me5)M(Cl)(L2-H+)] ( 9, 10 M ? Rh, Ir), (Et3P)Pd(Cl)2L1 ( 3 ), and [(Et3P)Pd(Cl)(L2)]+Cl? ( 8 ). The NMR spectra indicate that for 5 and 6 only one diastereoisomer is formed. The complexes 1, 2, 3 and 5 were characterized by X-ray diffraction.  相似文献   

8.
2, 4‐Dimethylpenta‐1, 3‐diene and 2, 4‐Dimethylpentadienyl Complexes of Rhodium and Iridium The complexes [(η4‐C7H12)RhCl]2 ( 1 ) (C7H12 = 2, 4‐dimethylpenta‐1, 3‐diene) and [(η4‐C7H12)2IrCl] ( 2 ) were obtained by interaction of C7H12 with [(η2‐C2H4)2RhCl]2 and [(η2‐cyclooctene)2IrCl]2, respectively. The reaction of 1 or 2 with CpTl (Cp = η5‐C5H5) yields the compounds [CpM(η4‐C7H12)] ( 3a : M = Rh; 3b : M = Ir). The hydride abstraction at the pentadiene ligand of 3a , b with Ph3CBF4 proceeds differently depending on the solvent. In acetone or THF the “half‐open” metallocenium complexes [CpM(η5‐C7H11)]BF4 ( 4a : M = Rh; 4b : M = Ir) are obtained exclusively. In dichloromethane mixtures are produced which additionally contain the species [(η5‐C7H11)M(η5‐C5H4CPh3)]BF4 ( 5a : M = Rh; 5b : M = Ir) formed by electrophilic substitution at the Cp ring, as well as the η3‐2, 4‐dimethylpentenyl compound [(η3‐C7H13)Rh{η5‐C5H3(CPh3)2}]BF4 ( 6 ). By interaction of 2, 4‐dimethylpentadienyl potassium with 1 or 2 the complexes [(η4‐C7H12)M(η5‐C7H11)] ( 7a : M = Rh; 7b : M = Ir) are generated which show dynamic behaviour in solution; however, attempts to synthesize the “open” metallocenium cations [(η5‐C7H11)2M]+ by hydride abstraction from 7a , b failed. The new compounds were characterized by elemental analysis and spectroscopically, 4b and 5a also by X‐ray structure analysis.  相似文献   

9.
Reactions of Cp*NbCl4 and Cp*TaCl4 with Trimethylsilyl‐azide, Me3Si‐N3. Molecular Structures of the Bis(azido)‐Oxo‐Bridged Complexes [Cp*NbCl(N3)(μ‐N3)]2(μ‐O) and [Cp*TaCl2(μ‐N3)]2(μ‐O) (Cp* = Pentamethylcyclopentadienyl) The chloro ligands in Cp*TaCl4 (1c) can be stepwise substituted for azido ligands by reactions with trimethylsilyl azide, Me3Si‐N3 (A) , to generate the complete series of the bis(azido)‐bridged dimers [Cp*TaCl3‐n(N3)n(μ‐N3)]2 ( n = 0 (2c) , n = 1 (3c) , n = 2 (4c) and n = 3 (5c) ). If the solvent CH2Cl2 contains traces of water, an additional oxo bridge is incorporated to give [Cp*‐TaCl2(μ‐N3)]2(μ‐O) (6c) or [Cp*TaCl(N3)(μ‐N3)]2(μ‐O) (7c) , respectively. Both 6c and 7c are also formed in stoichiometric reactions from [Cp*TaCl2(μ‐OH)]2(μ‐O) (8c) and A . Analogous reactions of Cp*NbCl4 (1b) with A were used to prepare the azide‐rich dinuclear products [Cp*NbCl3‐n(N3)n(μ‐N3)]2 (n = 2 (4b) , and n = 3 (5b) ), and [Cp*NbCl(N3)(μ‐N3)]2(μ‐O) (7b) . The mononuclear complex Cp*Ta(N3)Me3 (10c) is obtained from Cp*Ta(Cl)Me3 and A . All azido complexes were characterised by their IR as well as their 1H and 13C NMR spectra; X‐ray crystal structure analyses are available for 6c and 7b .  相似文献   

10.
Synthesis and Crystal Structures of the Complexes [(Me2PhP)3Cl2Re≡N‐IrCl2(C5Me5)], [(Me2PhP)3Cl2Re≡N‐IrCl(COD)], [PPh4][O3Os≡N‐IrCl2(C5Me5)], and [PPh4][O3Os≡N‐IrCl(COD)] with Nitrido bridges Re≡N‐Ir and Os≡N‐Ir The heteronuclear complexes [(Me2PhP)3Cl2Re≡N‐IrCl2(C5Me5)] ( 1 ), [(Me2PhP)3Cl2Re≡N‐IrCl(COD)] ( 2 ), [PPh4][O3Os≡N‐IrCl2(C5Me5)] ( 3 ) and [PPh4][O3Os≡N‐IrCl(COD)] ( 4 ) were obtained by the reaction of the nitrido complexes [ReNCl2(PMe2Ph)3] and [OsO3N] with the iridium compounds [IrCl2(C5Me5)]2 and [IrCl(COD)]2 in benzonitrile. 1 forms red crystals with the composition 1 ·C6H5CN in the monoclinic space group P21/c and a = 1264.7(2); b = 1945.3(2); c = 1835.4(1) pm, β = 90.35(1)°, Z = 4. The complex fragment [IrCl2(C5Me5)] in the dinuclear complex is connected by an asymmetric nitrido bridge Re≡N‐Ir to the nitrido complex [ReNCl2(PMe2Ph)3]. The nitrido bridge is characterized by a Re‐N‐Ir bond angle of 179.4(2)° and distances Re‐N = 170.9(4) pm and Ir‐N = 203.3(4) pm. 2 forms brownish red, triclinic crystals with the space group P1¯ and a = 1076.6(2), b = 1373.2(2), c = 1452.4(1) pm, α = 107.513(8), β = 101.843(9), γ = 110.04(1)°, Z = 2. The nitrido bridge to the complex fragment [IrCl(COD)] has a Re‐N‐Ir bond angle of 173, 8(4)° and distances Re‐N = 170, 4(8) pm and Ir‐N = 196, 2(8) pm. 3 crystallizes as monoclinic red crystals in the space group P21/n and a = 1449.9(2), b = 906.74(4), c = 2628.9(5) pm, β = 103.50(1)°, Z = 4. The nitrido bridge Os≡N‐Ir is slightly bent (Os‐N‐Ir = 165.0(3)°). The distances are Os‐N = 168.3(5) pm and Ir‐N = 201.9(5) pm. 4 forms dark brown, orthorhombic crystals with the space group P212121 and a = 704.35(2), b = 1228.17(6), c = 3442.0(4) pm, Z = 4. The distances in the slightly bent nitrido bridge (Os‐N‐Ir = 161.8(4)°) are Os‐N = 169.3(7) pm und Ir‐N = 197.8(7) pm.  相似文献   

11.
Syntheses, Structure and Reactivity of η3‐1,2‐Diphosphaallyl Complexes and [{(η5‐C5H5)(CO)2W–Co(CO)3}{μ‐AsCH(SiMe3)2}(μ‐CO)] Reaction of ClP=C(SiMe2iPr)2 ( 3 ) with Na[Mo(CO)35‐C5H5)] afforded the phosphavinylidene complex [(η5‐C5H5)(CO)2Mo=P=C(SiMe2iPr)2] ( 4 ) which in situ was converted into the η1‐1,2‐diphosphaallyl complex [η5‐(C5H5)(CO)2Mo{η3tBuPPC(SiMe2iPr)2] ( 6 ) by treatment with the phosphaalkene tBuP=C(NMe2)2. The chloroarsanyl complexes [(η5‐C5H5)(CO)3M–As(Cl)CH(SiMe3)2] [where M = Mo ( 9 ); M = W ( 10 )] resulted from the reaction of Na[M(CO)35‐C5H5)] (M = Mo, W) with Cl2AsCH(SiMe3)2. The tungsten derivative 10 and Na[Co(CO)4] underwent reaction to give the dinuclear μ‐arsinidene complex [(η5‐C5H5)(CO)2W–Co(CO)3{μ‐AsCH(SiMe3)2}(μ‐CO)] ( 11 ). Treatment of [(η5‐C5H5)(CO)2Mo{η3tBuPPC(SiMe3)2}] ( 1 ) with an equimolar amount of ethereal HBF4 gave rise to a 85/15 mixture of the saline complexes [(η5‐C5H5)(CO)2Mo{η2tBu(H)P–P(F)CH(SiMe3)2}]BF4 ( 18 ) and [Cp(CO)2Mo{F2PCH(SiMe3)2}(tBuPH2)]BF4 ( 19 ) by HF‐addition to the PC bond of the η3‐diphosphaallyl ligand and subsequent protonation ( 18 ) and/or scission of the PP bond by the acid ( 19 ). Consistently 19 was the sole product when 1 was allowed to react with an excess of ethereal HBF4. The products 6 , 9 , 10 , 11 , 18 and 19 were characterized by means of spectroscopy (IR, 1H‐, 13C{1H}‐, 31P{1H}‐NMR, MS). Moreover, the molecular structures of 6 , 11 and 18 were determined by X‐ray diffraction analysis.  相似文献   

12.
The limits of steric crowding in organometallic metallocene complexes have been examined by studying the synthesis of [(C5Me5)3MLn] complexes as a function of metal in which L=Me3CCN, Me3CNC, and Me3SiCN. The bis(tert‐butyl nitrile) complexes [(C5Me5)3Ln(NCCMe3)2] (Ln=La, 1 ; Ce, 2 ; Pr, 3 ) can be isolated with the largest lanthanide metal ions, La3+, Ce3+, and Pr3+. The Pr3+ ion also forms an isolable mono‐nitrile complex, [(C5Me5)3Pr(NCCMe3)] ( 4 ), whereas for Nd3+ only the mono‐adduct [(C5Me5)3Nd(NCCMe3)] ( 5 ) was observed. With smaller metal ions, Sm3+ and Y3+, insertion of Me3CCN into the M? C(C5Me5) bond was observed to form the cyclopentadiene‐substituted ketimide complexes [(C5Me5)2Ln{NC(C5Me5)(CMe3)}(NCCMe3)] (Ln=Sm, 6 ; Y, 7 ). With tert‐butyl isocyanide ligands, a bis‐isocyanide product can be isolated with lanthanum, [(C5Me5)3La(CNCMe3)2] ( 8 ), and a mono‐isocyanide product with neodymium, [(C5Me5)3Nd(CNCMe3)] ( 9 ). Silicon–carbon bond cleavage was observed in reactions between [(C5Me5)3Ln] complexes and trimethylsilyl cyanide, Me3SiCN, to produce the trimeric cyanide complexes [{(C5Me5)2Ln(μ‐CN)(NCSiMe3)}3] (Ln=La, 10 ; Pr, 11 ). With uranium, a mono‐nitrile reaction product, [(C5Me5)3U(NCCMe3)] ( 12 ), which is analogous to 5 , was obtained from the reaction between [(C5Me5)3U] and Me3CCN, but [(C5Me5)3U] reacts with Me3CNC through C? N bond cleavage to form a trimeric cyanide complex, [{(C5Me5)2U(μ‐CN)(CNCMe3)}3] ( 13 ).  相似文献   

13.
The synthesis and structural characterization of two azirine rhodium(III ) complexes are described. The stabilization, N‐coordination and phenylgroup π‐stacking of the highly reactive and strained 3‐phenyl‐2H‐azirine by transition metal coordination is observed. The reaction of the dimeric complex [(η5‐C5Me5)RhCl2]2 with 3‐phenyl‐2H‐azirine (az) in CH2Cl2 at room temperature in a 1:2 molar ratio afforded the neutral mono‐azirine complex [(η5‐C5Me5)RhCl2(az)]. The subsequent reaction of [(η5‐C5Me5)RhCl2]2 with six equivalents of az and 4 equivalents of AgOTf yielded the cationic tris‐azirine complex [(η5‐C5Me5)Rh(az)3](OTf)2. After purification, all complexes have been fully characterized. The molecular structures of the novel rhodium(III ) complexes exhibit slightly distorted octahedral coordination geometries around the metal atoms.  相似文献   

14.
Synthesis, Crystal Structure, and Properties of the Complexes [(H2O)Cl4Os≡N‐IrCl(C5Me5)(AsPh3)], [(Ph3Sb)Cl4Os≡N‐IrCl(C5Me5)(SbPh3)], [(Ph3Sb)2Cl3Os≡N‐IrCl(COD)] and [{(Me2PhP)2(CO)Cl2Re≡N}2ReNCl2(PMe2Ph)] The dinuclear complexes [(H2O)Cl4Os≡N‐IrCl(C5Me5)(AsPh3)]·H2O ( 1 ·H2O), [(Ph3Sb)Cl4Os≡N‐IrCl(C5Me5)(SbPh3)] ( 2 ), and [(Ph3Sb)2Cl3Os≡N‐IrCl(COD)] ( 3 ) result from the reaction of the nitrido complexes [(Ph3As)2OsNCl3] and [(Ph3Sb)2OsNCl3] with the iridium compounds [IrCl2(C5Me5)]2 and [IrCl(COD)]2 in dichloromethane. 1 crystallizes as 1 ·H2O in form of green platelets in the monoclinic space group Cm and a = 1105.53(6); b = 1486.76(9); c = 2024.88(10) pm, β = 97.191(4)°, Z = 4. The formation of 1 in air involves a ligand exchange, and the coordination of a water molecule in trans position to the Os‐N triple bond. The resulting complex fragments [(H2O)Cl4Os≡N] and [IrCl(C5Me5)(AsPh3)] are connected by an asymmetric nitrido bridge Os≡N‐Ir. The nitrido bridge is characterised by an Os‐N‐Ir bond angle of 173.7(7)°, and distances Os‐N = 168(1) pm and Ir‐N = 191(1) pm. 2 crystallizes in clumped together brown platelets with the space group and a = 1023.3(3), b = 1476.2(3), c = 1872.5(6) pm, α = 74.60(2), β = 73.84(2), γ = 76.19(2)°, Z = 2. In 2 the asymmetric nitrido bridge Os≡N‐Ir joins the two complex fragments [(Ph3Sb)Cl4Os≡N] and [IrCl(C5Me5)(SbPh3)], which are formed by a ligand exchange reaction. 3 forms dark green crystals with the triclinic space group and a = 1079.4(1), b = 1172.3(1), c = 1696.7(2) pm, α = 101.192(9),β = 92.70(1), γ = 92.61(1)°, Z = 2. The distances in the almost linear nitrido bridge (Os≡N‐Ir = 175.3(7)°) are Os‐N = 171(1) pm and Ir‐N = 183(1) pm. The reaction of [ReNCl2(PMe2Ph)3] with [Mo(CO)3(NCMe)3] unexpectedly affords the trinuclear complex [{(Me2PhP)2(OC)Cl2Re≡N}2ReNCl2(PMe2Ph)] ( 4 ) as the main product. It forms triclinic brown crystals with the composition 4 ·2THF and the space group (a = 1382.70(7), b = 1498.58(7), c = 1760.4(1) pm, α = 99.780(7), β = 99.920(7), γ = 114.064(6)°, Z = 2). In the trinuclear complex, the central fragment, [ReNCl2(PMe2Ph)] is joined in trans position to two nitrido complexes [(Me2PhP)2(CO)Cl2Re≡N], giving an almost linear Re≡N‐Re‐N≡Re arrangement. The bond angles and distances in the nitrido bridges are Re‐N‐Re = 167.8(3)°, Re‐N = 171.1(8) pm and 204.2(8) pm; and Re‐N‐Re = 168.1(4)°, Re‐N = 170.9(9) and 203.5(9) pm respectively. As expected, the Re‐N bond length to the terminal nitrido ligand on the central Re atom is much shorter at 161.2(9) pm than the triple bonds of the asymmetric bridges.  相似文献   

15.
A high‐yielding synthetic route for the preparation of group 9 metallaboratrane complexes [Cp*MBH(L)2], 1 and 2 ( 1 , M=Rh, 2 , M=Ir; L=C7H4NS2) has been developed using [{Cp*MCl2}2] as precursor. This method also permitted the synthesis of an Rh–N,S‐heterocyclic carbene complex, [(Cp*Rh)(L2)(1‐benzothiazol‐2‐ylidene)] ( 3 ; L=C7H4NS2) in good yield. The reaction of compound 3 with neutral borane reagents led to the isolation of a novel borataallyl complex [Cp*Rh(L)2B{CH2C(CO2Me)}] ( 4 ; L=C7H4NS2). Compound 4 features a rare η3‐interaction between rhodium and the B‐C‐C unit of a vinylborane moiety. Furthermore, with the objective of generating metallaboratranes of other early and late transition metals through a transmetallation approach, reactions of rhoda‐ and irida‐boratrane complexes with metal carbonyl compounds were carried out. Although the objective of isolating such complexes was not achieved, several interesting mixed‐metal complexes [{Cp*Rh}{Re(CO)3}(C7H4NS2)3] ( 5 ), [Cp*Rh{Fe2(CO)6}(μ‐CO)S] ( 6 ), and [Cp*RhBH(L)2W(CO)5] ( 7 ; L=C7H4NS2) have been isolated. All of the new compounds have been characterized in solution by mass spectrometry, IR spectroscopy, and 1H, 11B, and 13C NMR spectroscopies, and the structural types of 4 – 7 have been unequivocally established by crystallographic analysis.  相似文献   

16.
In the title compound, azido‐2κN‐bis­[μ‐(1η5:2κP)‐di­phenyl­phosphino­cyclo­penta­dienyl][2(η5)‐penta­methyl­cyclo­penta­di­enyl]­iron(III)­rhodium(III) hexa­fluoro­phosphate, [{Rh(C10H15)(N3)}{Fe(μ‐C17H14P)2}]PF6 or [FeRh(C10H15)(μ‐C17H14P)2(N3)]PF6, the coordination sphere of RhIII can be described as pseudo‐tetrahedral, composed of two P atoms from a 1,1′‐bis­(di­phenyl­phosphino)­ferrocene (dppf) ligand, an azido N atom and the centroid of the ring of a C5Me5 (Cp*) ligand. The two cyclo­penta­dienyl rings in the dppf moiety adopt an eclipsed conformation. The Rh⋯Fe distance is 4.340 (2) Å.  相似文献   

17.
[CpR(OC)Mo(μ‐η2:2‐P2)2FeCpR′] as Educt for Heterobimetallic Dinuclear Clusters with P2 and CnRnP4‐n Ligands (n = 1, 2) The cothermolysis of [CpR(OC)Mo(μ‐η2:2‐P2)2FeCpR′] ( 1 ) and tBuC≡P ( 2 ) as well as PhC≡CPh ( 3 ) affords the heterobimetallic triple‐decker like dinuclear clusters [(Cp'''Mo)(Cp*′Fe)(P3CtBu)(P2)] ( 4 ), Cp''' = C5H2tBu3‐1,2,4, Cp*′ = C5Me4Et, and [(Cp*Mo)(Cp*Fe)(P2C2Ph2)(P2)] ( 5 ) with a bridging tri‐ and diphosphabutadiendiyl ligand. 4 and 5 have been characterized additionally by X‐ray crystallography.  相似文献   

18.
Diimido, Imido Oxo, Dioxo, and Imido Alkylidene Halfsandwich Compounds via Selective Hydrolysis and α—H Abstraction in Molybdenum(VI) and Tungsten(VI) Organyl Complexes Organometal imides [(η5‐C5R5)M(NR′)2Ph] (M = Mo, W, R = H, Me, R′ = Mes, tBu) 4 — 8 can be prepared by reaction of halfsandwich complexes [(η5‐C5R5)M(NR′)2Cl] with phenyl lithium in good yields. Starting from phenyl complexes 4 — 8 as well as from previously described methyl compounds [(η5‐C5Me5)M(NtBu)2Me] (M = Mo, W), reactions with aqueous HCl lead to imido(oxo) methyl and phenyl complexes [(η5‐C5Me5)M(NtBu)(O)(R)] M = Mo, R = Me ( 9 ), Ph ( 10 ); M = W, R = Ph ( 11 ) and dioxo complexes [(η5‐C5Me5)M(O)2(CH3)] M = Mo ( 12 ), M = W ( 13 ). Hydrolysis of organometal imides with conservation of M‐C σ and π bonds is in fact an attractive synthetic alternative for the synthesis of organometal oxides with respect to known strategies based on the oxidative decarbonylation of low valent alkyl CO and NO complexes. In a similar manner, protolysis of [(η5‐C5H5)W(NtBu)2(CH3)] and [(η5‐C5Me5)Mo(NtBu)2(CH3)] by HCl gas leads to [(η5‐C5H5)W(NtBu)Cl2(CH3)] 14 und [(η5‐C5Me5)Mo(NtBu)Cl2(CH3)] 15 with conservation of the M‐C bonds. The inert character of the relatively non‐polar M‐C σ bonds with respect to protolysis offers a strategy for the synthesis of methyl chloro complexes not accessible by partial methylation of [(η5‐C5R5)M(NR′)Cl3] with MeLi. As pure substances only trimethyl compounds [(η5‐C5R5)M(NtBu)(CH3)3] 16 ‐ 18 , M = Mo, W, R = H, Me, are isolated. Imido(benzylidene) complexes [(η5‐C5Me5)M(NtBu)(CHPh)(CH2Ph)] M = Mo ( 19 ), W ( 20 ) are generated by alkylation of [(η5‐C5Me5)M(NtBu)Cl3] with PhCH2MgCl via α‐H abstraction. Based on nmr data a trend of decreasing donor capability of the ligands [NtBu]2— > [O]2— > [CHR]2— ? 2 [CH3] > 2 [Cl] emerges.  相似文献   

19.
Thermolysis of [Cp*Ru(PPh2(CH2)PPh2)BH2(L2)] 1 (Cp*=η5‐C5Me5; L=C7H4NS2), with terminal alkynes led to the formation of η4‐σ,π‐borataallyl complexes [Cp*Ru(μ‐H)B{R‐C=CH2}(L)2] ( 2 a – c ) and η2‐vinylborane complexes [Cp*Ru(R‐C=CH2)BH(L)2] ( 3 a – c ) ( 2 a , 3 a : R=Ph; 2 b , 3 b : R=COOCH3; 2 c , 3 c : R=p‐CH3‐C6H4; L=C7H4NS2) through hydroboration reaction. Ruthenium and the HBCC unit of the vinylborane moiety in 2 a – c are linked by a unique η4‐interaction. Conversions of 1 into 3 a – c proceed through the formation of intermediates 2 a – c . Furthermore, in an attempt to expand the library of these novel complexes, chemistry of σ‐borane complex [Cp*RuCO(μ‐H)BH2L] 4 (L=C7H4NS2) was investigated with both internal and terminal alkynes. Interestingly, under photolytic conditions, 4 reacts with methyl propiolate to generate the η4‐σ,π‐borataallyl complexes [Cp*Ru(μ‐H)BH{R‐C=CH2}(L)] 5 and [Cp*Ru(μ‐H)BH{HC=CH‐R}(L)] 6 (R=COOCH3; L=C7H4NS2) by Markovnikov and anti‐Markovnikov hydroboration. In an extension, photolysis of 4 in the presence of dimethyl acetylenedicarboxylate yielded η4‐σ,π‐borataallyl complex [Cp*Ru(μ‐H)BH{R‐C=CH‐R}(L)] 7 (R=COOCH3; L=C7H4NS2). An agostic interaction was also found to be present in 2 a – c and 5 – 7 , which is rare among the borataallyl complexes. All the new compounds have been characterized in solution by IR, 1H, 11B, 13C NMR spectroscopy, mass spectrometry and the structural types were unequivocally established by crystallographic analysis of 2 b , 3 a – c and 5 – 7 . DFT calculations were performed to evaluate possible bonding and electronic structures of the new compounds.  相似文献   

20.
Room temperature photolysis of a triply‐bridged borylene complex, [(μ3‐BH)(Cp*RuCO)2(μ‐CO)Fe(CO)3] ( 1 a ; Cp*=C5Me5), in the presence of a series of alkynes, 1,2‐diphenylethyne, 1‐phenyl‐1‐propyne, and 2‐butyne led to the isolation of unprecedented vinyl‐borylene complexes (Z)‐[(Cp*RuCO)2(μ‐CO)B(CR)(CHR′)] ( 2 : R, R′=Ph; 3 : R=Me, R′=Ph; 4 : R, R′=Me). This reaction permits a hydroboration of alkyne through an anti ‐ Markovnikov addition. In stark contrast, in the presence of phenylacetylene, a metallacarborane, closo‐[1,2‐(Cp*Ru)2(μ‐CO)2{Fe2(CO)5}‐4‐Ph‐4,5‐C2BH2] ( 5 a) , is formed. A plausible mechanism has been proposed for the formation of vinyl‐borylene complexes, which is supported by density functional theory (DFT) methods. Furthermore, the calculated 11B NMR chemical shifts accurately reflect the experimentally measured shifts. All the new compounds have been characterized in solution by mass spectrometry and IR, 1H, 11B, and 13C NMR spectroscopies and the structural types were unequivocally established by crystallographic analysis of 2 , 5 a , and 5 b .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号