首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The compound NH4HCN2 ( 1 ) was prepared by the reaction of H2CN2 with liquid ammonia. The ammonium salt 1 was characterized by a low temperature single‐crystal X‐ray structure analysis. The anionic part of the structure consists of HCN2? anions, which are connected via N–H···N bonds (H···N distance: 2.47Å, DHA: 165°). The N–H···N hydrogen bonds of the ammonium ion to the anions range from 2.00 to 2.14Å (DHA = Donor···Acceptor angles: 165–176°), all N–H···N interactions together give rise to a three‐dimensional network. 1 decomposes quantitatively to dicyandiamide at room temperature.  相似文献   

2.
Synthesis and Crystal Structure of Ammonium Tetraamminelithium Amidotrithiophosphate‐Ammonia(1/1)(NH4)[Li(NH3)4][P(NH2)S3]·NH3 Colourless crystals of (NH4)[Li(NH3)4][P(NH2)S3]·NH3 were prepared by the reduction of P4S10 with a solution of lithium in liquid ammonia. The X‐ray structure determination shows them to contain the pseudo‐tetrahedral amidotrithiophosphate anion [P(NH2)S3]2− (point group CS), which is the hitherto unknown final member of a series of previously characterized amidothiophosphates. The ammonium ion and the ammonia molecule of solvation form an diamminehydrogen(1+)‐ion N2H7+ with a short, nearly linear hydrogen bond of 2.864(3) Å.  相似文献   

3.

A new composite complex of [La(NMP)4(H2O)4][HSiMo12O40]·2NMP·H2O (NMP = N-methyl-2- pyrrolidone) was synthesized and characterized by IR, UV, ESR, TG-DTA and single crystal structural analysis. The water and organic ligands (NMP) coordinate directly with La(III) to form a dodecahedral complex and the SiMo12O4? 40 anion is the counter ion. IR and X-ray analysis show that there is strong interaction between the polyoxometalate and organic donors. The complex is strongly photosensitive under irradiation with sunlight, resulting in a charge-transfer complex by oxidation of the N-methyl-2-pyrrolidone and reduction of the polyoxometalate. Low temperature ESR spectra indicate thermal electron delocalization among the Mo atoms in the title compound.  相似文献   

4.
Rubidium amide‐ammonia(3/2), RbNH2·2/3NH3, was synthesized from Rubidiumhydride, RbH, in liquid ammonia at ?78 °C. The compound crystallizes in the cubic space group I213 with Z = 4, a = 10.0490(12) Å, and V = 1014.77(20) Å as isometric colorless crystals. The crystal structure was solved from single‐crystal X‐ray data. The structure contains a three‐dimensional network of amide anions and ammonia molecules, which are interconnected via hydrogen bonds.  相似文献   

5.
Crystal Structure of (NMe4)2[Re3Br11(H2O)] [Re3Br9(H2O)3](H2O)2 . (NMe4)2[Re3Br11(H2O)] [Re3Br9(H2O)3](H2O)2 crystallizes from hydrobromic acid solution of Re3Br9 · 2 H2O and NMe4Br at 0 – 5°C. The crystal structure (monoclinic; P21/m (Nr. 11); a = 967.9(3); b = 1 529.7(4); c = 1 710.9(4) pm; β = 91.66(2)°; Z = 2; R = 0.113; Rw = 0.068) has been determined from four-circle diffractometer data. The structure contains two different cluster units of trivalent rhenium, isolated anionic [Re3Br11(H2O)]2? units and neutral cluster units that are connected through crystal water molecules to chains{[Re3Br9(H2O)3](H2O)2}.  相似文献   

6.
[Hg(sulfamethoxazolato)2]·2DMSO ( 1 ) and [Cu2(CH3COO)4(sulfa‐methoxazole)2] ( 2 ) can be obtained by the reaction of sulfamethoxazole with mercury acetate or copper acetate in methanol. The structures of the two complexes were characterized by single crystal X—ray diffractometry. Compound 1 consists of sulfamethoxazolato ligands bridging the metal ions building an unidimensional chain. Two solvent dimethylsulfoxide molecules are involved via N‐H···O hydrogen bridges. The mercury atom shows a linear primary coordination arrangement formed by two trans deprotonated sulfonamidic nitrogen atoms. The overall coordination around the metal atom may be regarded as a strongly distorted octahedron when the interactions of mercury with four sulfonamidic oxygen atoms [bond distances of 2.761(4) Å—2.971(4) Å] are also considered to build an equatorial plane and the N1 and N1′ atoms [bond distance of 2.037(5) Å] occupy the apical positions. Compound 2 is a dinuclear complex in which the copper ions are bridged by four syn‐syn acetate ligands which are related by a symmetry centre located in the centre of the complex. Each copper atom presents a nearly octahedral coordination where the equatorial plane is formed by four oxygen atoms and an isoxazolic nitrogen atom and the second copper atom occupy the apical positions.  相似文献   

7.
Metal Ampoules as Mini‐Autoclaves: Syntheses and Crystal Structures of [Al(NH3)4Cl2][Al(NH3)2Cl4] and (NH4)2[Al(NH3)4Cl2][Al(NH3)2Cl4]Cl2 The salts [Al(NH3)4Cl2]+[Al(NH3)2Cl4]≡AlCl3 · 3 NH3 ( 1 ) and (NH4+)2[Al(NH3)4Cl2]+[Al(NH3)2Cl4](Cl)2≡ AlCl3 · 3 NH3 · (NH4)Cl ( 2 ) have been obtained as single crystals during the reactions of aluminum and aluminum trichloride, respectively, with ammonium chloride in sealed Monel metal containers. The crystal structure of 1 was determined again [triclinic, P‐1; a = 574.16(10); b = 655.67(12); c = 954.80(16) pm; α = 86.41(2); β = 87.16(2); γ = 84.89(2)°], that of 2 for the first time [monoclinic, I2/m; a = 657.74(12); b = 1103.01(14); c = 1358.1(3) pm; β = 103.24(2)°].  相似文献   

8.
Crystal Structure of (NH4)3SnF7: A Double Salt According to (NH4)3[SnF6]F and not (NH4)4SnF8 (NH4)3SnF7 is obtained as colourless single crystals from the reaction of NH4HF2 with tin powder at 300°C. The crystal structure (cubic, Pm3m, Z = 1, a = 602.5(1) pm at 293 K; a = 598.0(1) pm at 100 K) contains [SnF6]2? octahedra and lonesome F? ions surrounded by NH4+ cations only; it may be considered as a derivative of the Cu3Au-type of structure according to Cu3[Au]□ ?(NH4)3[SnF6]F. The F? ions of the [SnF6]2? octahedra with their Sn4+ centre in the origin of the unit cell at m3m are disordered in different ways at 293 and 100 K, respectively.  相似文献   

9.
On the Crystal Structures of the Cyano Complexes [Co(NH3)6][Fe(CN)6], [Co(NH3)6]2[Ni(CN)4]3 · 2 H2O, and [Cu(en)2][Ni(CN)4] Of the three title compounds X‐ray structure determinations were performed with single crystals. [Co(NH3)6][Fe(CN)6] (a = 1098.6(6), c = 1084.6(6) pm, R3, Z = 3) crystallizes with the CsCl‐like [Co(NH3)6][Co(CN)6] type structure. [Co(NH3)6]2[Ni(CN)4]3 · 2 H2O (a = 805.7(5), b = 855.7(5), c = 1205.3(7) pm, α = 86.32(3), β = 100.13(3), γ = 90.54(3)°, P1, Z = 1) exhibits a related cation lattice, the one cavity of which is occupied by one anion and 2 H2O, whereas the other contains two anions parallel to each other with distance Ni…Ni: 423,3 pm. For [Cu(en)2][Ni(CN)4] (a = 650.5(3), b = 729.0(3), c = 796.5(4) pm, α = 106.67(2), β = 91.46(3), γ = 106.96(2)°, P1, Z = 1) the results of a structure determination published earlier have been confirmed. The compound is weakly paramagnetic and obeys the Curie‐Weiss law in the range T < 100 K. The distances within the complex ions of the compounds investigated (Co–N: 195.7 and 196.4 pm, Ni–C: 186.4 and 186.9 pm, resp.) and their hydrogen bridge relations are discussed.  相似文献   

10.
The extraction of the silicide K12Si17 with liquid ammonia in the presence of a sequestering agent and AuPPh3Cl or Zn(Cp*)2 led to crystals of the solvate compound K8[Si4][Si9] · (NH3)14.6, which was characterized by single‐crystal X‐ray diffraction. It is the first compound with an isolated and ligand‐free [Si4]4– cluster obtained from solution. It also contains one [Si9]4– cluster per formula unit, whereas the precursor K12Si17 is built from [Si4]4– and [Si9]4– clusters with a 2:1 ratio.  相似文献   

11.
Coordinatively Unsaturated Diiron Complexes: Synthesis and Crystal Structures of [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] and [Fe2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] [Fe2(μ‐CO)(CO)6(μ‐H)(μ‐PtBu2)] ( 1 ) reacts spontaneously with dppm (dppm = Ph2PCH2PPh2) to give [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 2 c ). By thermolysis or photolysis, 2 c loses very easily one carbonyl ligand and yields the corresponding electronically and coordinatively unsaturated complex [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 3 ). 3 exhibits a Fe–Fe double bond which could be confirmed by the addition of methylene to the corresponding dimetallacyclopropane [Fe2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 4 ). The reaction of 1 with dppe (Ph2PC2H4PPh2) affords [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppe)] ( 5 ). In contrast to the thermolysis of 2 c , yielding 3 , the heating of 5 in toluene leads rapidly to complete decomposition. The reaction of 1 with PPh3 yields [Fe2(CO)6(H)(μ‐PtBu2)(PPh3)] ( 6 a ), while with tBu2PH the compound [Fe2(μ‐CO)(CO)5(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 6 b ) is formed. The thermolysis of 6 b affords [Fe2(CO)5(μ‐PtBu2)2] and the degradation products [Fe(CO)3(tBu2PH)2] and [Fe(CO)4(tBu2PH)]. The molecular structures of 3 , 4 and 6 b were determined by X‐ray crystal structure analyses.  相似文献   

12.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐Ray Crystal Structures of [Ru2(CO)4(μ‐H)(μ‐S)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], [Ru2(CO)4(μ‐X)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (X = Cl, S2CH) [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 1 ) reacts in benzene with elemental sulfur to the addition product [Ru2(CO)4(μ‐H)(μ‐S)(μ‐PtBu2)(μ‐dppm)] ( 2 ) (dppm = Ph2PCH2PPh2). 2 is also obtained by reaction of 1 with ethylene sulfide. The reaction of 1 with carbon disulfide yields with insertion of the CS2 into the Ru2(μ‐H) bridge the dithioformato complex [Ru2(CO)4(μ‐S2CH)(μ‐PtBu2)(μ‐dppm)] ( 3 ). Furthermore, 1 reacts with [NO][BF4] to the complex salt [Ru2(CO)4(μ‐NO)(μ‐H)(μ‐PtBu2)(μ‐dppm)][BF4] ( 4 ), and reaction of 1 with CCl4 or CHCl3 affords spontaneously [Ru2(CO)4(μ‐Cl)(μ‐PtBu2)(μ‐dppm)] ( 5 ) in nearly quantitative yield. The molecular structures of 2 , 3 and 5 were confirmed by crystal structure analyses.  相似文献   

13.
(NH4)2[Mo6Cl14] · H2O ( 1 ) was prepared from reactions of MoCl2 in ethanol with aqueous NH4Cl solution. It crystallizes in the monoclinic space group I2/a (no. 15), Z = 4 with a = 912.3(1), b = 1491.2(2), c = 1724.8(2) pm, β = 92.25(1)°; R1 = 0.023 (based on F values) and wR2 = 0.059 (based on F2 values), for all measured X‐ray reflections. The structure of the cluster anion can be given as [(Mo6Cl)Cl]2– (i = inner, a = outer ligands). Thermal stability studies show that 1 loses crystal water followed by the loss of NH4Cl above 350 °C to yield MoCl2. The water‐free compound (NH4)2[Mo6Cl14] ( 2 ) was synthesized by solid state reaction of MoCl2 and NH4Cl in a sealed quartz ampoule at 270 °C. No single‐crystals could be obtained. Decompositions of 1 and 2 under nitrogen and argon exhibited the loss of NH4Cl at about 350 °C. Decomposition under NH3 resulted in the formation of MoN and Mo2N at 540 °C and 720 °C, respectively.  相似文献   

14.
The Oxochlorotantalates (PPh4)2[Ta2OCl9]2 · 2 CH2Cl2, (PPh4)2[Ta2OCl10] · 2 CH3CN, and (K-18-crown-6)4[Ta4O6Cl12] · 12 CH2Cl2 (K-18-crown-6)4[Ta4O6Cl12] · 12 CH2Cl2 was obtained from a reaction of tantalum pentachloride, K2S5 and 18-crwon-6 in dichlormethane. According to its crystal structure analysis it is tetragonal (space group I 4 2d) and contains [Ta4O6Cl12]4– ions that have an adamantane-like Ta4O6 skeleton. Each K+ ion is coordinated by the oxygen atoms of the crown ether molecule from one side and with three Cl atoms of one [Ta4O6Cl12]4– ion from the opposite side. (PPh4)2[Ta2OCl10] · 2 CH3CN was a product from PPh4Cl and TaCl5 in acetonitrile in the presence of Na2S4. Its crystals are monoclinic (space group P21/c) and contain centrosymmetric [Ta2OCl10]2– ions having a linear Ta–O–Ta grouping with short bonds (Ta–O 189 pm). TaCl5 and H2S formed a solid substance (TaSCl3) from which a small amount of (PPh4)2[Ta2OCl9]2 · 2 CH2Cl2 was obtained by the reaction with PPh4Cl in CH2Cl2. The anions in the monoclinic crystals (space group P21/n) consist of two Ta2OCl9 units which are joined by chloro bridges; each Ta2OCl9 unit has a nearly linear Ta–O–Ta group with differing bond lengths (179 and 202 pm). The oxygen in the compounds probably was introduced by traces of water in the crown ether, acetonitrile or H2S, respectively.  相似文献   

15.
Triphenylphosphine Oxide (L) as Solvent and Ligand for Metallophthalocyaninates; Synthesis and Structure of [{Li(L)}2(μ‐pc)], [Li(L)4][Lipc] · Solvate, [Mg(L)pc] · Solvate, and [Zn(L)pc] · Solvate Triphenylphosphine oxide (L) coordinates to metallophthalocyaninates of Li, Mg and Zn at 300 °C. After purification and recrystallization in different solvents the very soluble and stable title compounds have been isolated and structurally characterized. In [{Li(L)}2(μ‐pc)], the Li atom lies in a distorted tetragonal pyramid of four isoindole N atoms (Ni) at a distance varying between 2.163(5) and 2.301(5) Å, and an O atom at 1.863(5) Å. In [Li(L)4] · [Lipc] · S, the Li atom of the cation coordinates four O atoms in a distorted tetrahedral arrangement at a distance varying from 1.887(9) to 1.953(9) Å, while the Li atom of the anion is in a quasi quadratic planar geometry of four Ni atoms (1.951(9)–1.977(9) Å) with the Li atom being displaced by 0.15 Å out of the (Ni)4 plane. The structural data of the distorted tetragonal pyramidale Mg(Ni)4O moiety in [Mg(L)pc] and the solvates [Mg(L)pc] · S (S = CH2Cl2, thf, 2py) generally do not vary significantly: Mg–Ni/2.035(3) –2.061(3) Å, Mg–O/1.955(2)–2.000(3) Å. The Mg atom is displaced by ca. 0.52 Å out of the (Ni)4 plane towards the O atom and the Mg–O–P moiety is bent (ca. 153°). [Zn(L)pc] · S crystallizes as a mixed crystal of equal parts of the conformer with a bent (155.1(3)°) and that of a quasi linear Zn–O–P moiety (174.2(3)°). Structural data of the Zn(Ni)4O moiety: (Zn–Ni)av: 2.024/2.013 Å; Zn–O: 2.050(4)/2.081(4) Å; Zn–(Ni)4: 0.40/0.33 Å. In the crystal, the Mg and Zn derivates aggregate in double layers forming pairs. The pc ligands in the triclinic complexes with good overlap of the neighbouring pc ligands are in a waving conformation, while those in the monoclinic complexes with weak overlap are in a concave conformation.  相似文献   

16.
(PPh4)2HP7 · 3NH3 was prepared by the reaction of K3P7 with a proton‐charged ion exchange resin in the presence of (PPh4)Br in liquid ammonia, and characterized by low temperature X‐ray structure analysis. The thermally very unstable compound contains the hydrogenheptaphosphide anion HPequation/tex2gif-stack-1.gif, the nortricyclane‐like cage of which is slightly distorted by the attachment of the hydrogen atom.  相似文献   

17.
Synthesis and Crystal Structures of [P(C6H5)4][1-(NH3)B10H9] and Cs[(NH3)B12H11] · 2CH3OH The reduction of [1-(NO2)B10H9]2? with aluminum in alkaline solution yields [1-(NH3)B10H9]? and by treatment of [B12H12]2? with hydroxylamine-O-sulfonic acid [(NH3)B12H11]? is formed. The crystal structures of [P(C6H5)4][1-(NH3)B10H9] (triclinic, space group P1 , a = 7.491(2), b = 13.341(2), c = 14.235(1) Å, α = 68.127(9), β = 81.85(2), γ = 86.860(3)°, Z = 2) and Cs[(NH3)B12H11] · 2CH3OH (monoclinic, space group P21/n, a = 14.570(2), b = 7.796(1), c = 15.076(2) Å, β = 111.801(8)°, Z = 4) reveal for both compounds the bonding of an ammine substituent to the cluster anion.  相似文献   

18.
Phase‐pure ammonium catena‐polyphosphate IV [NH4PO3]x was synthesized by heating NH4H2PO4 in a tube furnace under an ammonia gas flow. The product contained single crystals of [NH4PO3]x IV appropriate for an X‐ray structure determination enabling structure refinement of this compound. The pseudo‐merohedrally twinned crystals of [NH4PO3]x crystallize in the monoclinic crystal system (P21/c, no. 14, a = 2270.3(5), b = 458.14(9), c = 1445.1(3) pm, β = 108.56(3)°, Z = 4, 2264 data, R1 = 0.076). In the unit cell the catena‐polyphosphate chain anions run parallel [010] with a chain‐periodicity P = 2 and a stretching factor fs = 0.94. The chain anions are interconnected through extensive hydrogen bonding towards the ammonium ions. Due to ‘chemical twinning’ a novel catena‐polyphosphate structure type is realized in [NH4PO3]x IV. The vibrational spectra of [NH4PO3]x IV are reported as well.  相似文献   

19.
As12Se44—: a New Selenoarsenate Anion with a Polyarsenic Cage in the Compound [Co(NH3)6]2As12Se4 · 12 NH3 Orange coloured crystals of [Co(NH3)6]2As12Se4 · 12 NH3 were prepared by the reduction of As4Se4 with a solution of sodium in liquid ammonia and subsequent precipitation with CoBr2. The X‐ray structure determination shows them to contain the selenoarsenate anion As12Se44—, which consists of a central As12‐cage with four exo‐bonded, formally negatively charged Se atoms. The structure of the As12‐cage is equivalent to the main polyphosphorus building unit of a known organopolyphosphane and of tubular P12 in the compound (CuI)3P12.  相似文献   

20.
[Ph2P(O)CH2Im][F3B(μ‐OH)BF3]. First Structural Characterization of the Hexafluoro(μ‐hydroxo)diborate Ion [1] The hexafluoro(μ‐hydroxo)diborate ion has been isolated as it's Ph2P(O)CH2Im salt [Im = 2‐(1, 3, 4, 5‐tetramethylimidazolio)] ( 2 ) through basic hydrolysis of [Ph2P(OBF3)CH2Im]BF4 ( 1 ). The crystal structure of 2 · CH2Cl2 reveals the presence of ion pairs linked by unsymmetrical O‐H‐O hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号