首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Four Schiff base complexes, [Zn2L2(NCS)2] ( 1 ), [Cd2L2(NCS)2]n ( 2 ), [Zn4L2(N3)2Cl4(OH2)(CH3OH)] ( 3 ), and [Cu4L2(N3)2Cl4(OH2)(CH3OH)] ( 4 ) (where L = 2‐[(2‐dimethylaminoethylimino)methyl]phenol), were synthesized and characterized by elemental analyses, infrared spectroscopy, and single crystal X‐ray determinations. Both 1 and 2 are structurally similar polynuclear complexes. In 1 , each Zn atom has a slightly distorted square‐pyramidal coordination configuration. In the basal plane, the Zn atom is coordinated by one O and two N atoms of one L, and by one O atom of another L. The apical position is occupied by one terminal N atom of a coordinated thiocyanate anion. The Zn···Zn separation is 3.179(3) Å. While in 2 , the Cd1 atom is six‐coordinated in an octahedral coordination. In the equatorial plane, the Cd1 atom is coordinated by one O and two N atoms of one L, and by one O atom of another L. The axial positions are occupied by the terminal N and S atoms from two bridging thiocyanate anions. The coordination of Cd2 atom in 2 is similar to those of the zinc atoms in 1 . The Cd···Cd separation is 3.425(2) Å. Both 3 and 4 are novel tetra‐nuclear complexes. Each metal atom in the complexes has a slightly distorted square‐pyramidal coordination. The arrangements of the terminal metal atoms are similar, involving one O and two N atoms of one L ligand and one bridging Cl atom defining the basal plane, and one O atom of a coordinated water molecule or MeOH molecule occupying the apical position. The coordinations of the central metal atoms are also similar. The basal plane of each metal atom involves one O atom of one L ligand, one terminal Cl atom, and two terminal N atoms from two bridging azide groups. The apical position is occupied by a bridging Cl atom which also acts as a basal donor atom of the terminal metal atom. The Schiff base ligand and the four complexes showed high selectivity and antibacterial activities against most of the bacteria.  相似文献   

2.
Three linear trinuclear Schiff base complexes, {Zn[Zn(CH3COO)(C17H16N2O2)]2} ( 1 ), {Zn[Zn(CH3COO)(C25H20N2O2)]2} ( 2 ), and {Cd[Cd(CH3COO)(C18H18N2O2)]2} ( 3 ), were synthesized for the first time under solvolthermal conditions. Their structures have been characterized by elemental analyses, X-ray single crystal determinations, and infrared spectroscopy. There are three bridges across the M-M atom pairs (M is Zn for 1 and 2 , or Cd for 3 ) in each complex, involving two O atoms of a Schiff base ligand (N,N′-bis(salicylidene)-1, 3-propanediaminate (SALPD2-) for 1 , N, N′-bis(2-hydroxy-naphthalmethenylimino)-1, 3-propanediaminate (NAPTPD2-) for 2 , and N,N′-bis-(salicylidene)-1,4-butanediaminate (SALBD2-) for 3 ), and an O-C-O moiety of a μ-acetato group. In each of the complexes, the central M2+ ion is located on an inversion center and has a distorted octahedral coordination involving four bridging O atoms from two Schiff base ligands in the equatorial plane and one O atom from each bridging acetate group in the axial positions. The coordination around the terminal M2+ ions is irregular square pyramidal, with two O atoms and two N atoms of the Schiff base ligand in the basal plane and one O atom from an acetate group in the apical position. The acetate bridges linking the central and terminal M2+ ions are mutually trans. The M…M distances are 3.050(3) Å in 1 , 3.139(2) Å in 2 , and 3.287(6) Å in 3 .  相似文献   

3.
Two heterocyclic Schiff bases were synthesized via the condensation reactions of primary amines with carbonyl compounds. 2-[(4-pyridylmethylene)-amino] phenol(compound 1) was synthesized by the interaction of 4-pyridinecarboxaldehyde with o-aminophenol in ethanol solvent; N,N‘-bis(3-(furan-2-yl)allylidene)benzene-1,4-diamin(compound 2) was synthesized by the interaction of 3-(2-furyl)acrolein with p-phenylenediamine in ethanol medium. The compounds were characterized by elemental analysis, IR, MS and single-crystal X-ray diffraction. Compound 1(C12H10N2O) crystallizes in the monoclinic system, space group P21/c with a = 7.0771(7), b = 7.2820(7), c = 19.849(2),β= 96.3390(10)°, V = 1016.66(17) ?3, Z = 4, Mr = 198.22, Dc = 1.295 g/cm3, F(000) = 416, GOOF = 1.060, μ= 0.085 mm-1, the final R = 0.0371 and wR = 0.0929 for 1497 observed reflections with I 2σ(I). Compound 2(C20H16N2O2) crystallizes in the orthorhombic system, space group Fdd2 with a = 26.344(15), b = 48.50(3), c = 5.293(3), V = 6764(7) ?3, Z = 16, Mr = 316.35, Dc = 1.243 g/cm3, F(000) = 2656, GOOF = 1.043, = 0.081 mm-1, the final R = 0.0526 and wR = 0.1267 for 2059 observed reflections with I 2σ(I). 1 and 2 molecules are connected through hydrogen bonds to generate a 2D network and a 1D chain structure, respectively. The preliminary antibacterial activity results showed that the title compounds display excellent antibacterial activities to Escherichia coli, Staphylococcus aureus and Bacillus subtilis.  相似文献   

4.
Copper(II) complexes of three chiral enantiomeric pairs of o‐hydroxy Schiff bases derived from (R)‐(+)‐1‐phenylethylamine and (S)‐(‐)‐1‐phenylethylamine, were prepared and characterized. Elemental analyses, specific rotation, i.r., electronic, cd and mass spectra,and some X‐ray crystal structures were obtained. The X‐ray study of four complexes shows that the geometry around the metal atom is distorted square planar. Epr studies of all these complexes in DMF solution at 77 K suggest that their geometries in solution are slightly different to that observed in the solid state by X‐ray crystallography. Although, cd spectra only show charge transfer absorptions, the data confirm the enantiomeric character of the three pairs of the obtained complexes.  相似文献   

5.
Five copper zinc phenylchalcogenolate complexes [(iPr3PCu)3(ZnMe2)2(SPh)3] ( 1 ), [(iPr3PCu)2(ZnPh)4(SPh)6] ( 2 ), [(iPr3PCu)2(ZnEt)4(SPh)6] ( 3 ), [(iPr3PCu)3(ZnEt)(SePh)4] ( 4 ), and [(iPr3PCu)3Cu(iPr3PZn)(TePh)6] ( 5 ) were synthesized by the reaction of phosphine stabilized copper phenylchalcogenolate complexes with ZnR2 (R = Me, Et, Ph) with and without additional chalcogenol. The novel mixed metal compounds were characterized by single‐crystal X‐ray structure analysis and NMR spectroscopy. 4 and 5 are the first examples of compounds with a Zn–Se–Cu or a Zn–Te–Cu linkage, respectively.  相似文献   

6.
Two novel linear trinuclear Schiff base complexes, [Ni{Ni(C17H14Br2N2O2)(NO3)(H2O)}2] · 2MeOH · 2H2O ( 1 ), and [Cd{Ni(C25H20N2O2)(CH3COO)}2] ( 2 ), were synthesized and characterized by elemental analyses, infrared spectroscopy, and X‐ray single crystal determinations. There are three bridges across the Ni‐M atom pairs (M is Ni for 1 , and Cd for 2 ) in each complex, involving two phenolate O atoms of a Schiff base ligand (N,N′‐bis(5‐bromosalicylidene)‐1,3‐propanediaminate (BSPD) for 1 and N,N′‐bis(2‐hydroxynaphthylmethenylimino)‐1,3‐propanediaminate (HNPD) for 2 ), and an O‐N‐O moiety of a μ‐nitrato group for 1 or an O‐C‐O moiety of a μ‐acetato group for 2 . In each of the complexes, the central M2+ is located on an inversion center and has an octahedral coordination involving four bridging O atoms from two Schiff base ligands in the equatorial plane and one O atom from each bridging nitrate or acetate group in the axial positions. The coordination around the terminal Ni2+ ions is also octahedral for 1 , but square pyramidal for 2 . The nitrate or acetate bridges linking the central and terminal metal ions are mutually trans. The Ni···M distances are 3.006(2) Å in 1 , and 3.175(2) Å in 2 .  相似文献   

7.
Three novel Schiff base cadmium(II) complexes, derived from the end‐on (μ‐1,1‐N3) azide or end‐to‐end (μ‐1,3‐NCS) thio cyanate bridges and similar tridentate Schiff base ligands, have been synthesized under similar synthetic procedures and their crystal structures determined by X‐ray diffraction methods. They are the dinuclear double end‐on azide‐bridged [Cd2(L1)2(N3)2(μ‐1,1‐N3)2] ( 1 ), the dinuclear double end‐on azide‐bridged [Cd2(L2)2(N3)2(μ‐1,1‐N3)2] ( 2 ), and the dinuclear double end‐to‐end thiocyanate‐bridged [Cd2(L3)2(NCS)2(μ1,3‐NCS)2] ( 3 ), where L1, L2 and L3 are three similar tridentate Schiff bases obtained by condensation of 2‐pyridylaldehyde with N,N‐diethylethane‐1,2‐diamine, of 2‐pyridylaldehyde with N‐isopropylethane‐1,2‐diamine, and of 2‐pyridylaldehyde with N,N‐dimethylpropane‐1,3‐diamine, respectively. Each cadmium(II) centre in the complexes is in a distorted octahedral coordination. There is a crystallographic inversion centre in each of the complexes. The similar small ligands used as the secondary ligands in the preparation of the cadmium(II) complexes with similar Schiff bases can result in similar structures.  相似文献   

8.
Dizinc(II) complexes of two acyclic Schiff‐base ligands L1 and L2 were synthesized by Schiff base condensation of 2‐[3‐(2‐formylphenoxy)‐2‐hydroxypropoxy]benzaldehyde ( PL ) with 1,2‐diaminopropane and 1,2‐diaminoethane, respectively, in the presence of zinc(II) salts. The isolation of a selection of 2:1 (metal:ligand) complexes of zinc(II) was carried out and conductance measurements, IR, UV/Vis absorption, and fluorescence emission spectroscopy, as well as X‐ray diffraction were employed to probe the nature of the respective complexes in both solid and solution states. The molecular structure of [Zn2 L1 (NO3)3] ( 1 ) complex consists of two six‐coordinate atoms, which are bridged by the deprotonated hydroxy group and one 1,3‐bridging nitrate anion. The structure of [Zn2 L2 (NO3)(H2O)2](NO3)2 · CH3OH ( 3 ) consists of a dizinc cation and two nitrate anions as counterions. In compound 3 , each zinc atom is bound to water instead of a terminal nitrate anion in a distorted octahedral arrangement. The intermetallic separation distance of Zn ··· Zn in 3 (3.376 Å) is slightly smaller than 1 (3.403 Å) and is similar to that found in zinc phosphotriesterase (3.5 Å). The π–π interactions between the benzene rings of adjacent molecules in 3 are stronger than in 1 .  相似文献   

9.
1 INTRODUCTION Schiff base ligands have been studied for a longtime due to the instant and enduring popularity fromtheir easy synthesis and versatility complexes. Theyplay an important role in the development of coor-dination chemistry as well as inorganic biochemistry,catalysis, optical materials and so on[1, . Consider- 2]able attention has been focused on the syntheses andstructures of copper(II) and nickle(II) complexes.The nickel complexes with multidentate Schiff baseligands have …  相似文献   

10.
New copper(II) complexes of asymmetrical tetradentate Schiff bases containing pyrazine have been prepared and thoroughly characterised by elemental analysis, IR and electronic spectroscopy, mass spectrometry and magnetic measurements. Two alternative methods were used in the isolation of the complexes: template synthesis in the preparation of Cu(SalDpyz)ClO4 (HSalDPyz = derived from the condensation of salicylaldehyde, acetylpyrazine and 1,2‐ethylendiamine, 2‐methyl‐1,2‐propylendiamine, 1,2‐phenylendiamine) and direct interaction between copper perchlorate and the corresponding Schiff base, as in the isolation of Cu(AEPyz)(ClO4) (HAEPyz = (Z)‐4‐[2‐{[2‐{[(E)‐1‐(pyrazinyl)ethylidene]amino} ethyl)amino]‐3‐penten‐2‐one)]. [Cu(SalEn)(py)(OClO3)][Cu(SalEn)(py)]ClO4 ( 1 ) (SalEn = 4‐(2‐hydroxyphenyl)‐3‐aza‐3‐buten‐1‐amino, py = pyridine), metal precursor in the preparation of Cu(SalEnpyz)(ClO4) (HSalEnpyz = 2‐{E(2‐{[(E)‐1‐(2‐pyrazinyl)ethylidene]amino}ethyl)imino]methyl}phenol), was crystallographically characterised. The crystal structure of [Cu(AEpyz)]ClO4 ( 2 ) is also reported.  相似文献   

11.
Two new zinc(II) complexes, [Zn2L2Cl4]·2[ZnL(CH3OH)Cl2] 1 and [ZnL2(NO3)2] 2, were synthesized by reacting ZnX2·nH2O (X = Cl-, NO3-) and a Schiff base ligand 2-[(4-me- thylphenylimino)methyl]-6-methoxyphenol (C15H15NO2, L) which was obtained by the condensation of o-vanillin (2-hydroxy-3-methoxybenzaldehyde) with p-toluidine. Both 1 and 2 were characterized by single-crystal X-ray diffraction technique, elemental analysis, molar conductance, FT-IR, UV-Vis, 1H-NMR spectra and thermogravimetric analysis. The Schiff base ligand and its zinc(II) complexes have been tested in vitro to evaluate their antibacterial activity against bacteria, viz., Escherichia Coli, Staphylococcus aureus and Bacillus Subtilis. The results show that these complexes have higher activity than the corresponding free Schiff base ligand against the same bacteria.  相似文献   

12.
Complexes of new Schiff base ligands generated in situ from the reaction of 1‐aminoglycerol, aldehydes, and metal ions are reported. [Cu4(HL1)4] ( 1 ) and [Ni4O(HL1)3(H2O)3)] ? 6 H2O ? DMF ? DMSO ( 2 ) have M4O4 cubane cores, with the L/M molar ratios of 4:4 and 3:4, respectively. [MnIII3MnIINaOCl4(HL1)3] ? 3 M eCN ( 3 ) has a unique pentanuclear trigonal propeller‐shaped MnIII3MnIINa core structure, and the coordination assemblies are linked by hydrogen bonds to afford a 3D channel structure. [Cu2(HL2)2] ( 4 ) has a bis(μ2‐alkoxo)‐bridged Cu2O2 core, with the binuclear species linked by hydrogen bonds to afford a 1D double‐chain. [Ni7(OH)2(OCH3)4(H2L3)2(MeOH)2(H2O)2]‐ (ClO4)2 ? 10 H2O ( 5 ) has a heptanuclear structure containing heptadentate di‐Schiff base ligands, with the nickel(II) ions bridged by phenoxo, alkoxo, hydroxo, and methoxo groups to afford a very rare face‐sharing hexadruple defective cubane core with a Ni@Ni6 arrangement. The lattice water molecules are linked by hydrogen bonds to form helical chains, which are further hydrogen‐bonded to the coordination moieties to afford a 2D network. Variable temperature magnetic susceptibility measurements and nonlinear data‐fitting revealed that the “2+4” type of cubane complex 1 shows medium intradimeric ferromagnetic interactions and weak interdimeric ferromagnetic interactions. For complexes 2 and 5 , coexistent ferro‐ and antiferromagnetic couplings afford a non‐zero spin ground state. However, compound 3 shows antiferromagnetic interactions between MnIII and MnII, and ferromagnetic interactions between the MnIII centers, resulting in a global antiferromagnetic behavior. In conclusion, the reaction of 1‐aminoglycerol with aldehydes and metal salts afforded polynuclear complexes with a rich structural diversity and remarkable magnetic behavior.  相似文献   

13.
解庆范  陈延民 《无机化学学报》2019,35(12):2209-2216
采用不同的方法合成了3种酰腙的锌配合物[Zn(Lss)(phen)(DMF)](1)、{[Zn(HLdis)]_2·2CH_3OH}_n(2)和[Zn(Baf)_2]·CH_3OH (3),通过元素分析、红外光谱、紫外光谱和热重分析进行了表征,并经X射线单晶衍射分析它们晶体结构。1和3的晶体属于三斜晶系P1空间群,Zn(Ⅱ)的配位数为6;2属于单斜晶系P2_1/n空间群,Zn(Ⅱ)的配位数为5。3的前驱体是一种吡唑啉类化合物(C_(15)H_(14)N_2O_3,Pzl),它的晶体属于单斜晶系P2_1/c空间群;Pzl与锌离子配位时发生分子重排,开环产物HBaf以酰腙结构与Zn(Ⅱ)配位形成3。  相似文献   

14.
Four novel Schiff base nickel(II) and copper(II) complexes, derived from the end‐on (μ1,1‐N3) azide, end‐to‐end (μ1,3‐NCS) thiocyanate, or phenolate oxygen bridges, have been synthesized and their crystal structures determined by X‐ray diffraction methods. They are the dinuclear double end‐on azide‐bridged [Ni2(L1)2(MeCN)2(μ1,1‐N3)2]·MeOH ( 1 ), the dinuclear double end‐on azide‐bridged [Ni2(L2)2(MeOH)2(μ1,1‐N3)2][Ni2(L2)2(OH2)2(μ1,1‐N3)2]·MeOH ( 2 ), the dinuclear double end‐to‐end thiocyanate‐bridged [Cu2(L3)2(μ1,3‐NCS)2] ( 3 ), and the dinuclear double phenolate O‐bridged [Cu2(L4)2(NCS)2] ( 4 ), where HL1, HL2, HL3 and HL4 are four tridentate Schiff bases obtained by the condensation of 3,5‐dibromosalicylaldehyde with N‐ethylethane‐1,2‐diamine, of 3,5‐dichlorosalicylaldehyde with N‐methylpropane‐1,3‐diamine, of 3‐bromo‐5‐chlorosalicylaldehyde with 2‐aminomethylpyridine, and of 5‐nitrosalicylaldehyde with 2‐aminomethylpyridine, respectively. Each nickel(II) atom in 1 and 2 is in an octahedral coordination, while each copper(II) atom in 3 and 4 is in a square pyramidal coordination. There exists crystallographic inversion centre symmetry in each of the complexes.  相似文献   

15.
A series of heteroleptic copper(II) complexes [Cu( R QYMP )(Py]] ( 1a ‐ 4d ) supported on NNO‐tridentate Schiff base ( R QYMP ‐H) and bipyridine (Py=bpy, a ; phen, b ; dpq, c ; dppz, d ) co‐ligands have been synthesized and characterized. X‐ray crystal structural studies of complexes 1b , 2c , 3d and 4a displays that these complexes are mononuclear with a distorted square pyramidal geometry around the copper center. Cytotoxicity results indicate that all of these complexes have much higher activity against HeLa, SCC15, BCC and Ca9‐22 cancer cell lines as compared to cisplatin. Further, copper complex bearing suitable bulky group Schiff base ligands with dppz co‐ligand could be considered in designing efficient metalbased anticancer agents.  相似文献   

16.
2‐(((2‐Hydroxy‐3‐methoxyphenyl)methylene)amino)‐2(hydroxymethyl)‐1,3‐propanediol (LH4, as abbreviation) reacts with MnCl2 · 4H2O, CoCl2 · 6H2O, and Cu(ClO4)2 · 6H2O to give the new complexes [Mn(LH2)2] ( 1 ), [Co2Cl(H2O)(LH2)2] · 4H2O ( 2 ), and [Cu4(LH2)4(H2O)4] ( 3 ). Complex 1 is formed by the assembly of two molecules of the ligand with one manganese(IV) ion. In the mixed‐valence cobalt complex 2 there is an asymmetry between the coordination spheres of cobalt(II) and cobalt(III). In the tetramer 3 four copper(II) ions attain a distorted tetrahedral configuration surrounded by four molecules of the ligand.  相似文献   

17.
<正>Two new Cu(II) complexes have been synthesized with two different bidentate N_2O_2 donor Schiff base ligands HL_1 (2-((E)-(4-chlorophenylimino)methyl)-6-bromo-4-chlorophenol) and HL_2 (2-((E)-(2-chlorophenylimino)methyl)-6-bromo-4-chlorophenol), respectively. Both complexes 1 and 2 have been characterized by elemental analysis and single-crystal X-ray diffraction studies. Structural studies reveal that in both complexes the metal centers are four-coordinated with N_2O_2 donor set of Schiff base ligands. Complex 1 belongs to the tetragonal system, space group P4(3)2(1)2 with a = 10.2379(2), b = 10.2379(2), c = 24.9623(90) , V = 2616.41(12) ~3, Z = 4, D_c = 1.908 g/cm~3, μ(MoKα) = 4.3327 mm~(-1), F(000) = 1468, S = 0.999, the final R = 0.0345 and wR = 0.0835 for 3506 unique reflections (R_(int) = 0.0428) with 3249 observed ones (I > 2σ(I)). Complex 2 is of monoclinic system, space group P21/c with a = 11.064(3), b = 9.437(2), c = 13.277(4), β = 108.997(3)°, V = 1310.8(6) ~3 , Z = 2, D_c = 1.904 g/cm~3, μ(MoKα) = 4.319 mm~(-1), F(000) = 734, S = 0.997, the final R = 0.0282 and wR = 0.0619 for 3491 unique reflections (R_(int) = 0.0428) with 2777 observed ones (I > 2σ(I)). The units of the complex are linked via weak interactions, such as C-H…Br hydrogen bonds together with Cl…Cl and Cu…Cl interactions, leading to the formation of one-dimensional chain and two-dimensional network and stabilizing the crystal structure.  相似文献   

18.
To explore the coordination abilities of nitronyl nitroxide ligands, two ligands substituted with quinoxaline ( L1 ) and 2‐phenyl‐1, 2, 3‐triazole ( L2 ) and their NiII and ZnII complexes: Ni( L1 )(hfac)2 ( 1 ), Ni( L2 )(hfac)2 ( 2 ), and Zn( L2 )(hfac)2 ( 3 ) (hfac = hexafluoroacetylacetonate), were synthesized and characterized. X‐ray single‐crystal diffraction analysis shows that compound 1 has a mononuclear structure, which is further linked into a three‐dimensional (3D) supramolecular network by C–H ··· F hydrogen‐bonding, C–H ··· π, and π ··· π stacking interactions. Complexes 2 and 3 have similar mononuclear structures, which are further linked into one‐dimensional (1D) supramolecular chains by various intermolecular weak interactions, such as C–H ··· F hydrogen‐bonding, and π ··· π stacking interactions. The results indicate that the steric bulk of L1 and L2 and the existence of hexafluoroacetylacetonate (hfac) play important roles in controlling the formation of the final frameworks of complexes 1 – 3 . Moreover, the luminescent properties of the ligands and their complexes were investigated in detail.  相似文献   

19.
席夫碱及其络合物的可逆热致变色材料   总被引:15,自引:0,他引:15  
对具有可逆的热致变色的席夫碱及其络合物的分类、合成、变色机理以及发展前景等进行了回顾和探讨。  相似文献   

20.
合成了2个含三齿Schiff碱配体和单齿N-杂环分子的多核过渡金属配合物:1个含5-氯水杨醛缩对硝基苯甲酰腙(H2L1)和吗啡啉(Mf)的镍髤配合物[Ni(L1)(Mf)](1),1个含5-氯水杨醛缩水杨酰腙(H2L2)和吡啶(Py)的铜髤配合物[Cu2(L2)2(Py)2](2),并通过元素分析、红外光谱、紫外光谱以及单晶衍射等手段进行表征。在配合物1中,中心Ni髤与酰腙配体(L12-)的酚氧、亚胺氮、去质子酰胺氧原子以及中性吗啡啉氮原子配位形成平面四方形的N2O2配位构型,相邻配合物通过分子间氢键作用构筑成一维超分子链状结构。配合物2中含有2个晶体学上独立的双核铜髤配合物,相邻配合物分子的酚氧原子分别桥联2个[Cu(L2)(Py)]基本单元,形成2个含有Cu2(μ-O)2核心的配合物。每个Cu髤原子具有五配位的NONO(O)四角锥配位构型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号