首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The generation of iron(V) nitride complexes, which are targets of biomimetic chemistry, is reported. Temperature‐dependent ion spectroscopy shows that this reaction is governed by the spin‐state population of their iron(III) azide precursors and can be tuned by temperature. The complex [(MePy2TACN)Fe(N3)]2+ (MePy2TACN=N ‐methyl‐N ,N ‐bis(2‐picolyl)‐1,4,7‐triazacyclononane) exists as a mixture of sextet and doublet spin states at 300 K, whereas only the doublet state is populated at 3 K. Photofragmentation of the sextet state complex leads to the reduction of the iron center. The doublet state complex photodissociates to the desired iron(V) nitride complex. To generalize these findings, we show results for complexes with cyclam‐based ligands.  相似文献   

2.
In a stirred batch experiment and under aerobic conditions, ferroin (Fe(phen)32+) behaves differently from Ce(III) or Mn(II) ion as a catalyst for the Belousov‐Zhabotinsky (BZ) reaction with allylmalonic acid (AMA). The effects of bromate ion, AMA, metal‐ion catalyst, and sulfuric acid on the oscillating pattern were investigated. The kinetics of the reaction of AMA with Ce(IV), Mn(III), or Fe(phen)33+ ion was studied under aerobic or anaerobic conditions. The order of reactivity of metal ions toward reaction with AMA is Fe(phen)33+ > Mn(III) > Ce(IV) under aerobic conditions whereas it is Mn(III) > Ce(IV) > Fe(phen)33+ under anaerobic conditions. Under aerobic or anaerobic conditions, the order of reactivity of RCH(CO2H)2 (R = H (MA), Me (MeMA), Et (EtMA), allyl (AMA), n‐Bu (BuMA), Ph (PhMA), and Br (BrMA)) is PhMA > MA > BrMA > AMA > MeMA > EtMA > BuMA toward reaction with Ce(IV) ion and it is MA > PhMA > BrMA > MeMA > AMA > EtMA > BuMA toward reaction with Mn(III) ion. Under aerobic conditions, the order of reactivity of RCH(CO2H)2 toward reaction with Fe(phen)33+ ion is PhMA > BrMA > (MeMA, AMA) > (BuMA, EtMA) > MA. The experiment results are rationalized.  相似文献   

3.
The controlled atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) catalyzed by iron halide/N‐(n‐hexyl)‐2‐pyridylmethanimine (NHPMI) is described. The ethyl 2‐bromoisobutyrate (EBIB)‐initiated ATRP with [MMA]0/[EBIB]0/[iron halide]0/[NHPMI]0 = 150/1/1/2 was better controlled in 2‐butanone than in p‐xylene at 90 °C. Initially added iron(III) halide improved the controllability of the reactions in terms of molecular weight control. The p‐toluenesulfonyl chloride (TsC1)‐initiated ATRP were uncontrolled with [MMA]0/[TsC1]0/[iron halide]0/[NHPMI]0 = 150/1/1/2 in 2‐butanone at 90 °C. In contrast to the EBIB‐initiated system, the initially added iron(III) halide greatly decreased the controllability of the TsC1‐initiated ATRP. The ration of iron halide to NHPMI significantly influenced the controllability of both EBIB and TsC1‐initiated ATRP systems. The ATRP with [MMA]0/[initiator]0/[iron halide]0/[NHPMI]0 = 150/1//1/2 provided polymers with PDIs ≥ 1.57, whereas those with [iron halide]0/[NHPMI]0 = 1 resulted in polymers with PDIs as low as 1.35. Moreover, polymers with PDIs of approximately 1.25 were obtained after their precipitation from acidified methanol. The high functionality of the halide end group in the obtained polymer was confirmed by both 1H NMR and a chain‐extenstion reaction. Cyclic voltammetry was utilized to explain the differing catalytic behaviors of the in situ‐formed complexes by iron halide and NHPMI with different molar ratios. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4882–4894, 2004  相似文献   

4.
Addition of 2,4,6‐trinitrophenol (HTNP) to an ethene‐bridged diiron(III) μ‐oxo bisporphyrin ( 1 ) in CH2Cl2 initially leads to the formation of diiron(III) μ‐hydroxo bisporphyrin ( 2? TNP) with a phenolate counterion that, after further addition of HTNP or dissolution in a nonpolar solvent, converts to a diiron(III) complex with axial phenoxide coordination ( 3? (TNP)2). The progress of the reaction from μ‐oxo to μ‐hydroxo to axially ligated complex has been monitored in solution by using 1H NMR spectroscopy because their signals appear in three different and distinct spectral regions. The X‐ray structure of 2? TNP revealed that the nearly planar TNP counterion fits perfectly within the bisporphyrin cavity to form a strong hydrogen bond with the μ‐hydroxo group, which thus stabilizes the two equivalent iron centers. In contrast, such counterions as I5, I3, BF4, SbF6, and PF6 are found to be tightly associated with one of the porphyrin rings and, therefore, stabilize two different spin states of iron in one molecule. A spectroscopic investigation of 2? TNP has revealed the presence of two equivalent iron centers with a high‐spin state (S=5/2) in the solid state that converts to intermediate spin (S=3/2) in solution. An extensive computational study by using a range of DFT methods was performed on 2? TNP and 2 +, and clearly supports the experimentally observed spin flip triggered by hydrogen‐bonding interactions. The counterion is shown to perturb the spin‐state ordering through, for example, hydrogen‐bonding interactions, switched positions between counterion and axial ligand, ion‐pair interactions, and charge polarization. The present investigation thus provides a clear rationalization of the unusual counterion‐specific spin states observed in the μ‐hydroxo bisporphyrins that have so far remained the most outstanding issue.  相似文献   

5.
The quenching of fluorescence of the free-base tetraphenylporphyrin, H2TPP, and its metal derivatives, MgTPP and ZnTPP by diverse iron(III) complexes, [Fe(CN)6]3−, Fe(acac)3, [Fe(mnt)2], Fe(Salen)Cl, [Fe4S4(SPh)4]2−·, FeTPPCl and [Fe(Cp)2]+ has been studied both in homogeneous medium (CH3CN) and micellar media, SDS., CTAB and Triton X-100. The quenching efficiencies are analysed in terms of diffusional encounters and it has been possible to separate static quenching components. The quenching constants are dependent on the nature of the ligating atoms around iron(III) and also on the extent of π-conjugation of the ligands. The quenching mechanism has been investigated using steady-state irradiation experiments. Evidence for oxidative quenching by iron(III) complexes was obtained, though the spin multiplicities of the excited electronic states of iron(III) complexes permit both energy and electron transfer mechanisms for quenching of the singlet excited state of the porphyrins.  相似文献   

6.
We have prepared several new iron(III) complexes with ligands which contain a phenol group; these are tetradentate [(X-phpy)H, X and H(phpy) represent the substituents on the phenol ring and N,N-bis(2-pyridylmethyl)-N-(2-hydroxybenzyl)amine, respectively] and pentadentate ligands [(R-enph-X)H; R=ethyl(Et) or methyl(Me) derivative and H(Me-enph) denotes N,N-bis(2-pyridylmethyl)-N″-methyl-N″-(2″-hydroxyl-benzylamine)ethylenediamine] and have determined the crystal structures of Fe(phpy)Cl2, Fe(5-NO2-phpy)Cl2, and Fe(Me-enph)ClPF6, which are of a mononuclear six-coordinate iron(III) complex with coordination of one or two chloride ion(s). These compounds are highly colored (dark violet) due to the coordination of phenol group to an iron(III) atom. When hydrogen peroxide was added to the solution of the iron(III) complex, a color change occurs with bleaching of the violet color, indicating that oxidative degradation of the phenol moiety occurred in the ligand system. The bleaching of the violet color was also observed by the addition of t-butylhydroperoxide. The rate of the disappearance of the violet color is highly dependent on the substituent on the phenol ring; introduction of an electron-withdrawing group in the phenol ring decreases the rate of bleaching, suggesting that disappearance of the violet band should be due to a chemical reaction between the phenol group and a peroxide adduct of the iron(III) species with an η1-coordination mode and that in this reaction the peroxide adduct acts as an electrophile towards phenol ring. The intramolecular interaction between the phenol moiety and an iron(III)-peroxide adduct may induce activation of the peroxide ion, and this was supported by several facts that the solution containing an iron(III) complex and hydrogen peroxide exhibits high activities for degradation of nucleosides and albumin.  相似文献   

7.
Redox cycling of iron is a critical aspect of iron toxicity. Reduction of a low‐molecular‐weight iron(III)‐complex followed by oxidation of the iron(II)‐complex by hydrogen peroxide may yield the reactive hydroxyl radical (OH.) or an oxoiron(IV) species (the Fenton reaction). Complexation of iron by a ligand that shifts the electrode potential of the complex to either to far below ?350 mV (dioxygen/superoxide, pH=7) or to far above +320 mV (H2O2/HO., H2O pH=7) is essential for limitting Fenton reactivity. The oral chelating agents CP20, CP502, CP509, and ICL670 effectively remove iron from patients suffering from iron overload. We measured the electrode potentials of the iron(III) complexes of these drugs by cyclic voltammetry with a mercury electrode and determined the dependence on concentration, pH, and stoichiometry. The standard electrode potentials measured are ?620 mV, ?600 mV, ?535 mV, and ?535 mV with iron bound to CP20, ICL670, CP502, and CP509, respectively, but, at lower chelator concentrations, electrode potentials are significantly higher.  相似文献   

8.
The kinetics of the reduction of plutonium(IV) by hydroxyurea (HU), a novel salt free reductant, in nitric acid solutions has been studied. The observed reaction rate can be expressed as: -d[Pu(IV)]/dt=k 0[Pu(IV)]2[HU]/[H+]0.9, where k 0 = 5853±363 (l1.1.mol-1.1.s-1) at t = 13 °C. The activation energy is about 81.2 kJ/mol. The study also shows that uranium(VI) has no appreciable influence on the reaction rate. Compared with other organic reductants our experiments indicate that HU is a very fast reductant for plutonium(IV). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The reactions between strontium and iron nitrates have been studied in an open atmosphere system using three different molar ratios, 1:1 (I), 1:2 (II) and 2:1 (III) at different temperatures as pointed out from the DTA data. The reaction mechanism was discussed based on the chemical composition characterized by means of thermal analysis, X‐ray diffraction patterns, infrared spectra and magnetic susceptibility. It was found that the reaction products depend on both temperature of reaction and the ratio between reactants. The reaction products were found to be composed of a variety of iron compounds that possess different valences: SrFeO2.86, SrFeO2.97, SrFe2O4, SrFe12O19, Sr2Fe2O5 and Sr7Fe10O22 in addition to some accessory reaction products namely α‐Fe2O3 and FeO(OH).  相似文献   

10.
Using light energy and O2 for the direct chemical oxidation of organic substrates is a major challenge. A limitation is the use of sacrificial electron donors to activate O2 by reductive quenching of the photosensitizer, generating undesirable side products. A reversible electron acceptor, methyl viologen, can act as electron shuttle to oxidatively quench the photosensitizer, [Ru(bpy)3]2+, generating the highly oxidized chromophore and the powerful reductant methyl‐viologen radical MV+.. MV+. can then reduce an iron(III) catalyst to the iron(II) form and concomitantly O2 to O2.? in an aqueous medium to generate an active iron(III)‐(hydro)peroxo species. The oxidized photosensitizer is reset to its ground state by oxidizing an alkene substrate to an alkenyl radical cation. Closing the loop, the reaction of the iron reactive intermediate with the substrate or its radical cation leads to the formation of two oxygenated compounds, the diol and the aldehyde following two different pathways.  相似文献   

11.
运用三足四齿配体三(2-甲基吡啶)胺(TPA)或三(2-甲基苯丙咪唑)胺(TBA),得到两个双核铁(III)配合物,[Fe2L22-O)(μ2-p-NH2-C6H4COO)]3+ (L = TPA, 1 和 L = TBA, 2)。两个配合物均为单斜晶系,空间群为P2(1)/c.晶胞参数 1: a = 1.4529(4), b = 1.6622(5), c = 2.0625(6) nm, β= 100.327(5)º, V = 4.900(3) nm3, z = 4, F(000) = 2344, 分子量Mr = 1142.91, Dc = 1.549 g/cm3, R1 = 0.0544, R2 = 0.0962. 2: a = 1.3378(4), b = 2.1174(7), c = 2.4351(7) nm, β= 97.315(6)º, V = 6.842(4) nm3, z = 4, F (000) = 3116, 分子量Mr = 1505.08, Dc = 1.444 g/cm3, R1 = 0.0793, R2 = 0.1623. 在两个双核铁(III)配合物中,中心的三价铁和配体TPA或TBA上的四个氮原子和两个氧原子通过不同的桥形成一个畸变的八面体构型。  相似文献   

12.
The iron(III) compound of formula [3-pmH · 3-pm][Fe(NCS)4(3-pm)2] (3-pm = 3-(hydroxymethyl)pyridine) has been prepared by reaction between iron(III) thiocyanate and 3-(hydroxymethyl)pyridine in ethanol. The characterization was based on elemental analysis, infrared spectra and magnetic measurements. Single crystal X-ray diffraction methods show the monoclinic P2(1)/c space group with unit cell parameters: a = 12.295(3) Å, b = 15.854(3) Å, c = 16.880(3) Å, β = 100.12(3)° and Z = 4. The asymmetric unit of the title compound consists of [3-pmH · 3-pm]+ and [Fe(NCS)4(3-pm)2]? held together by ionic interaction and a hydrogen bond interaction (O(68)–H(68) ··· O(78)). The central metal ion is octahedrally coordinated by six nitrogens, four from NCS? form the equatorial plane and two from two 3-(hydroxymethyl)pyridines occupy axial positions. Magnetic susceptibility data in the temperature range 1.8–300 K show that iron(III) is high-spin S = 5/2(5 T 2g). Structural parameters and IR spectra of similar complexes are compared and discussed.  相似文献   

13.
Heterometallic copper(II)‐lanthanide(III) complexes have been made with a variety of exclusively O‐donor ligands including betaines (zwitterionic carboxylates) and chloroacetate, which are dinuclear CuLn, tetranuclear Cu2Ln2, pentanuclear Cu3Ln2, and octadecanuclear Cu12 complexes. The results show that subtle changes in both the carboxylates and acidity of the reaction solution can cause drastic changes in the structures of the products. Magnetic studies exhibit that shielding of the Ln3+ 4f electrons by the outer shell electrons is very effective to preclude significant coupling interaction between the Ln3+ 4f electrons and Cu2+ 3d electrons in either a mono‐atomic hydroxide‐bridged, or a carboxylate‐bridged system.  相似文献   

14.
Zn(II) ions sorption onto N‐Benzoyl‐N‐Phenylhydroxylamine (BPHA) impregnated polyurethane foam (PUF) has been studied extensively using radiotracer and batch techniques. Maximum sorption (~98%) of Zn(II) ions (8.9 × 10?6 M) onto sorbent surface is achieved from a buffer of pH 8 solution in 30 minutes using 7.5 mg/mL of BPHA‐impregnated polyurethane foam at 283 K. The sorption data follow Langmuir, Freundlich and Dubinin‐Radushkevich (D‐R) isotherms. The Langmuir constants Q = 18.01 ± 0.38 μ mole g?1 and b = (5.39 ± 0.98) × 103 L mole?1 have been computed. Freundlich constants 1/n = 0.29 ± 0.01 and Cm = 111.22 ± 12.3 μ mole g?1 have been estimated. Sorption capacity 31.42 ± 1.62 μ mole g?1, β = ?0.00269 ± 0.00012 kJ2 mole?2 and energy 13.34 ± 0.03 kJ mole?1 have been evaluated using D‐R isotherm. The variation of sorption with temperature yields ΔH = ?77.7 ± 2.8 k J mole?1, ΔS = ?237.7 ± 9.3 J mole?1 K?1 and ΔG = ?661.8 ± 117.5 k J mol?1 at 298 K reflecting the exothermic and spontaneous nature of sorption. Cations like Fe(III), Ce(III), Al(III), Pb(II) and Hg(II) and anions, i.e., oxalate, EDTA and tartrate, reduce the sorption significantly, while iodide and thiocyanate enhanced the sorption of Zn(II) ions onto BPHA‐impregnated polyurethane foam.  相似文献   

15.
The reaction of benzilmonoxime (BMOH) with CrCl3.6H2O in methanol gives the mono nuclear Cr(III) complex, [Cr(BMO)33 ( 1 ). Reaction of complex 1 with a methanolic solution of KOH at room temperature leads to a di‐nuclear Cr(III)‐Cr(III) complex, [Cr(BMO)2(OH)]2 ( 2 ). The complexes were characterized on the basis of their elemental analysis, Mass, IR, 1H and 13C‐NMR and electronic spectra. The IR studies were useful in assigning the coordination mode of the benzilmonoxime ligand to the chromium(III) ion. In addition, the presence of a hydroxo bridge in the dimeric complex 2 is inferred from the IR spectral studies. The electronic spectra of the complexes revealed two bands due to d–d transitions, and one band assignable to an oxygen (pπ)→Cr(eg*) LMCT transition observed in both complexes. An additional charge transfer transition, assignable to μ‐OH(pπ)→Cr(eg*), was only observed for the dimeric complex 2 . The splitting energy and Racah parameter were calculated to be 18484 cm‐1 and 560 cm‐1 for [Cr(BMO)3] ( 1 ), 17986 cm‐1 and 545 cm‐1 for [Cr(BMO)2(OH)]2 ( 2 ) respectively.  相似文献   

16.
A series of water‐insoluble iron(III) and manganese(III) porphyrins, FeT(2‐CH3)PPCl, FeT(4‐OCH3)PPCl, FeT(2‐Cl)PPCl, FeTPPCl, MnT(2‐CH3)PPOAc, MnT(4‐OCH3)PPOAc, MnT(2‐Cl)PPOAc and MnTPPOAc, in the presence of imidazole (ImH), F?, Cl?, Br? and acetate were used as catalysts for the aqueous‐phase heterogeneous oxidation of styrenes to the corresponding epoxides and aldehydes with sodium periodate. Also, the effect of various reaction parameters such as reaction time, molar ratio of catalyst to axial base, type of axial base, molar ratio of olefin to oxidant and nature of metal centre on the activity and oxidative stability of the catalysts and the product selectivity was investigated. Higher catalytic activities were found for the iron complexes. Interestingly, the selectivity towards the formation of epoxide and aldehyde (or acetophenone) was significantly influenced by the type of axial base. Furthermore, Br? and ImH were found to be the most efficient co‐catalysts for the oxidation of olefins performed in the presence of the manganese and iron porphyrins, respectively. The optimized molar ratio of catalyst to axial base was different for various axial bases. Also, the order of co‐catalyst activity of the axial bases obtained in aqueous medium was different from that reported for organic solvents. The use of a convenient axial base under optimum reaction catalyst to co‐catalyst molar ratio in the presence of the manganese porphyrin gave the oxidative products with a conversion of ca 100% in a reaction time of less than 3 h. However, the catalytic activity of the iron porphyrins could not be effectively improved by increasing the catalyst to co‐catalyst molar ratio.  相似文献   

17.
A new family of 14‐electron, four‐coordinate iron(II) complexes of the general formula [TptBu,MeFeX] (TptBu,Me is the sterically hindered hydrotris(3‐tert‐butyl‐5‐methyl‐pyrazolyl) borate ligand and X=Cl ( 1 ), Br, I) were synthesized by salt metathesis of FeX2 with TptBu,MeK. The related fluoride complex was prepared by reaction of 1 with AgBF4. Chloride 1 proved to be a good precursor for ligand substitution reactions, generating a series of four‐coordinate iron(II) complexes with carbon, oxygen, and sulphur ligands. All of these complexes were fully characterized by conventional spectroscopic methods and most were characterized by single‐crystal X‐ray crystallographic analysis. Magnetic measurements for all complexes agreed with a high‐spin (d6, S=2) electronic configuration. The halide series enabled the estimation of the covalent radius of iron in these complexes as 1.24 Å.  相似文献   

18.
Here we report a novel family of crystalline, supermicroporous iron(III) phosphonate nanomaterials (HFeP‐1‐3, HFeP‐1‐2, and HFeP‐1‐4) with different FeIII‐to‐organophosphonate ligand mole ratios. The materials were synthesized by using a hydrothermal reaction between benzene‐1,3,5‐triphosphonic acid and iron(III) chloride under acidic conditions (pH≈4.0). Powder X‐ray diffraction, N2 sorption, transmission and scanning electron microscopy (TEM and SEM) image analysis, thermogravimetric and differential thermal analysis (TGA‐DTA), and FTIR spectroscopic tools were used to characterize the materials. The triclinic crystal phase [P$\bar 1$ (2) space group] of the hybrid iron phosphonate was established by a Rietveld refinement of the PXRD analysis of HFeP‐1‐3 by using the MAUD program. The unit cell parameters are a=8.749(1), b=8.578(1), c=17.725(3) Å; α=104.47(3), β=97.64(1), γ=113.56(3)°; and V=1013.41 Å3. With these crystal parameters, we proposed an 24‐membered‐ring open framework structure for HFeP‐1. Compound HFeP‐1‐3, with an starting Fe/ligand molar ratio of 3.0, shows the highest Brunauer–Emmett–Telller (BET) surface area of 556 m2g?1 and uniform supermicropores of approximately 1.1 nm. The acidic surface of the porous iron(III) phosphonate nanoparticles was used in a highly efficient and recyclable catalytic transesterification reaction for the synthesis of biofuels under mild reaction conditions.  相似文献   

19.
Abstract

The reaction of antitumor active dirhodium(II) tetraacetate, [Rh2(AcO)4], with S-methyl-L-cysteine (HSMC) was studied at the pH of mixing (=4.8) in aqueous media at various temperatures under aerobic conditions. The results from UV–vis spectroscopy and electrospray ionization mass spectrometry (ESI–MS) showed that HSMC initially coordinates via its sulfur atom to the axial positions of the paddlewheel framework of the dirhodium(II) complex, and was confirmed by the crystal structure of [Rh2(AcO)4(HSMC)2]. After some time (48?h at 25?°C), or at elevated temperature (40?°C), Rh-SMC chelate formation causes breakdown of the paddlewheel structure, generating the mononuclear Rh(III) complexes [Rh(SMC)2]+, [Rh(AcO)(SMC)2] and [Rh(SMC)3], as indicated by ESI–MS. These aerobic reaction products of [Rh2(AcO)4] with HSMC have been compared with those of the two proteinogenic sulfur-containing amino acids methionine and cysteine. Comparison shows that the (S,N)-chelate ring size influences the stability of the [Rh2(AcO)4] paddlewheel cage structure and its RhII–RhII bond, when an amino acid with a thioether group coordinates to dirhodium(II) tetraacetate.  相似文献   

20.
We have designed and synthesized a new polymer, which could be used in the organic thin film transistor (OTFT). Poly[2,6‐bis(3′‐dodecythiophene‐2′‐yl)anthracene] (PDTAn), which is composed with anthracene moiety and dodecyl alkyl thiophene, was synthesized by oxidative polymerization using iron (III) chloride. The mole ratio of FeCl3 and monomer (4.2:1), keeping low temperature during the initiation reaction, amount of solvent, and dropping order were very important for oxidative polymerization without crosslinking. The molecular weight of the polymer (Mw) was measured to be 40,000 with 2.85 of polydispersity index by GPC. The physical and optical properties of the polymer were characterized by differential scanning calorimetry (DSC), cyclic voltammetry (CV), and optical absorption and photoluminescence (PL) spectroscopy. A field‐effect mobility of 1.1 × 10?4 cm2 V?1 S?1, a current on/off ratio of 105, and the Vth at ?15.2 V had been obtained for OTFTs using this polymer semiconductor by solution coating. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5115–5122, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号