首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The First Molecular Square Antiprismatic Ga8 Cluster exhibiting a closo Structure Ga8(C13H9)82– has been synthesized as a lithium salt from a reaction of fluorenyllithium with a metastable GaIBr solution. It is characterized by X‐ray structure analysis and DFT calculations. The eight Ga atoms form a square antiprismatic core and each Ga atom is σ‐bonded to a fluorenyl ligand. The Ga8 entity of the cluster is described as a closo compound in contrast to the earlier presented species Ga12(C13H9)102–. This interpretation is based on DFT calculations for Ga8H82– and B8H82–.  相似文献   

2.
3.
Syntheses and Thermal Properties of Cluster Molecules, formed from Groups 11‐13‐16 Elements In the presence of PPh3, CuX (X = Cl, CH3COO) or AgOC(O)C6H5 and GaCl3 react in THF with S(SiMe3)2 or Se(SiMe3)2 to yield [Cu6Ga8Cl4S13(PPh3)6] ( 1 ), [Cu6Ga8Cl4Se13(PPh3)6] ( 2 ), [Ag6Ga8Cl4S13(PPh3)6] ( 4 ) and [Ag6Ga8Cl4Se13(PPh3)6] ( 5 ). The use of PnPr2Ph instead of PPh3 and subsequent layering with n‐hexane leads to the formation of the cluster [Cu6Ga8Cl4Se13(PnPr2Ph)12] ( 3a , 3b ). Reaction of CuCl, GaCl3 and PnPr3 with Se(SiMe3)2 in THF results in the crystallisation of the ionic cluster (HPnPr3)2[Cu2Ga4Cl4Se6(PnPr3)4] ( 6 ). The structures of 1 — 6 were determined by X‐ray single crystal structure analysis. Thermogravimetric measurements of the cluster molecules and powder diffraction patterns of the remaining powders reveal the potential use of them as single source precursor compounds for the synthesis of the related ternary solid state materials.  相似文献   

4.
[Ga6R8]2– (R = SiPh2Me): A Metalloid Cluster Compound with an Unexpected Ga6‐Frame The reaction of a metastable solution of GaBr with a solution of LiSiPh2Me in a toluene/THF mixture results in orange coloured crystals of [Ga6(SiPh2Me)8]2– · 2 [Li(THF)4]+ ( 1 ). The unexpected structure of the planar Ga6 frame (C2h) could also be realized with the help of DFT calculation. DFT calculations furthermore show that 1 is energetically favoured against an octahedral Ga6R62– species and R2. In contrast calculations for the similar Al and B species show that in these cases the octahedral entities are favoured. These results demonstrate that even for similar compounds of B, Al, and Ga Wade rules are too general and that they cannot predict the correct structure. Moreover the atomic arrangement within 1 shows that a structure is preferred which is also present in allotropic β‐Ga and that therefore clusters of this type should be called metalloid or more general elementoid.  相似文献   

5.
Enantioselectivity in the aza‐Cope rearrangement of a guest molecule encapsulated in a cage‐like supramolecular assembly [Ga4L6]12? [L = 1,5‐bis(2',3'‐dihydroxybenzamido)naphthalene] is investigated using density functional theory and ab initio molecular orbital calculations. Reaction pathways leading to R‐ and S‐enantiomers encapsulated in the [Ga4L6]12? are explored. The reaction barriers and the stabilities of the prochiral structures differed in the [Ga4L6]12?, resulting that the product with an R structure is favorably produced in the Δ‐structure [Ga4L6]12?. The large energy difference in the prochiral structures in the [Ga4L6]12? was attributed to the deformation of the bulky substituent. The host–guest interaction energy raises the reaction barrier for the product with an S structure. The previous study suggested that the different stability of the prochiral substrates in the assembly was the origin of the enantioselectivity, and the suggestion is supported by our computational finding. In addition, our results show that the difference in the reaction barriers also importantly contributes to the enantioselectivity. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
1,4‐Di(isopropyl)‐1,4‐diazabutadiene as a Reagent for the Trapping of Monomeric Fragments of the Tetragalliumcluster Ga4[C(SiMe3)3]4 – Formation of an Unsaturated GaN2C2 Heterocycle and an Oxidation Product Containing a Ga‐O‐O‐Ga Group The tetrahedral tetragallium cluster Ga4[C(SiMe3)3]4 ( 1 ) dissociates upon dissolution to yield the monomeric fragments Ga‐R [R = C(SiMe3)3]. These monomers could be trapped now by the treatment of their solutions with 1,4‐di(isopropyl)‐1,4‐diazabutadiene. The product of the cycloaddition reaction ( 2 ) possesses a five‐membered GaN2C2 heterocycle with a coordinatively unsaturated gallium atom and an endocyclic C=C double bond. 2 is rather sensitive towards oxidation by traces of air. The contact with oxygen yielded a digallium peroxide [(C2N2iPr2)RGa‐O‐O‐GaR(C2N2iPr2)] ( 3 ) which was isolated in a very low yield only and which has a gallium atom attached to each oxygen atom of the inner peroxo group. Both chelating ligands of 3 possess an unpaired electron.  相似文献   

7.
The Hexagallane [Ga6{SiMe(SiMe3)2}6] and the closo‐Hexagallanate [Ga6{Si(CMe3)3}4 (CH2C6H5)2]2— — the Transition to an Unusual precloso‐Cluster The closo hexagallanate [Ga6R4(CH2Ph)2]2— (R = SitBu3) as well as the hexagallane Ga6R6 (R = SiMe(SiMe3)2) with only six cluster electron pairs were isolated from reactions of “GaI” with the corresponding silanides. The structure of the latter is derived from an octahedron by a Jahn‐Teller‐distortion and is different from the capped trigonal bipyramidal one expected by the Wade‐Mingos rules. Both compounds were characterized by X‐ray crystallography. The bonding is discussed with simplified Ga6H6 and Ga6H62— models via DFT methods.  相似文献   

8.
Supramolecular ensembles adopting ring‐in‐ring structures are less developed compared with catenanes featuring interlocked rings. While catenanes with inter‐ring closed‐shell metallophilic interactions, such as d10–d10 AuI–AuI interactions, have been well‐documented, the ring‐in‐ring complexes featuring such metallophilic interactions remain underdeveloped. Herein is described an unprecedented ring‐in‐ring structure of a AuI‐thiolate Au12 cluster formed by recrystallization of a AuI‐thiolate Au10 [2]catenane from alkane solvents such as hexane, with use of a bulky dibutylfluorene‐2‐thiolate ligand. The ring‐in‐ring AuI‐thiolate Au12 cluster features inter‐ring AuI–AuI interactions and underwent cluster core change to form the thermodynamically more stable Au10 [2]catenane structure upon dissolving in, or recrystallization from, other solvents such as CH2Cl2, CHCl3, and CH2Cl2/MeCN. The cluster‐to‐cluster transformation process was monitored by 1H NMR and ESI‐MS measurements. Density functional theory (DFT) calculations were performed to provide insight into the mechanism of the “ring‐in‐ring? [2]catenane” interconversions.  相似文献   

9.
We report results of non‐relativistic and two‐component relativistic single‐reference coupled‐cluster with single and double and perturbative triple excitations [CCSD(T)] treatments for the 4p‐block dimers Ga2 to Br2, the 5p‐block dimers In2 to I2, and their atoms. Extended basis sets up to pentuple zeta are employed and energies extrapolated to the complete basis‐set limit. Relativistic and non‐relativistic results for the dissociation energy De are in close agreement with each other and previously published data, provided non‐relativistic or scalar‐relativistic results are corrected for spin–orbit contributions taken from the literature. An exception is Te2 where theoretical results scatter by 0.085 eV. By virtue of this agreement it is unexpected that comparison with the experimental D0 or De dissociation energies (zero‐point vibrational effects are negligible in this context) reveal errors larger than 0.1 eV for Ga2, Ge2, and Sb2. Only relativistic treatments are presented for the 6p‐block cases Tl2 to At2. Sufficient agreement with experimental data is found only for Pb2 and Bi2, the deviation of the computed and experimental D0 values for Po2 is again larger than 0.1 eV. Deviations of 0.1 eV between the computed and experimental D0 values are a major reason for concern and call for additional investigations in both fields to clarify the situation.  相似文献   

10.
Separated Zn 13 cluster entities unexpectedly occur in the solid‐state structure of Mn8Ga27.4Zn13.6 (the central building block is shown). They correspond to centered cuboctahedra, that is, small volumes of face‐centered cubic metal. The intriguing segregation of Ga and Zn atoms in Mn8Ga27.4Zn13.6 was verfied by Rietveld refinement of neutron powder diffraction data.  相似文献   

11.
Ga2Br2R2 and Ga3I2R3 [R = C(SiMe3)3] — Two New Organoelement Subhalides of Gallium Containing One or Two Ga‐Ga Single Bonds The oxidation of the tetrahedral tetragallium cluster Ga4[C(SiMe3)3]4 ( 1 ) with elemental bromine in the presence of AlBr3 yielded the corresponding gallium subhalide Ga2Br2R2 [ 4 , R = C(SiMe3)3], which remains monomer even in the solid state and in which the GaII atoms are connected by a short Ga‐Ga single bond [243.2(2) pm]. The analogous diiodide Ga2I2R2 ( 3 ), which was obtained on a similar route by our group only recently, did not react with lithium tert‐butanolate by substitution as originally expected. Instead, partial disproportionation occurred with the formation of the trigallium diiodide Ga3I2R3 ( 6 ), in which three Ga atoms are connected by two Ga‐Ga single bonds (255.1 pm on average). Both terminal Ga atoms have a coordination number of four owing to the bridging function of both iodine atoms, while the inner one which has an oxidation number of +1 remains coordinatively unsaturated. An average oxidation state of 1.66 resulted for all atoms of the chain. The GaIII compound {[GaI(R)(OCMe3)(OH)]Li}2 ( 7 ) was isolated as the second product of the disproportionation. It is a dimer in the solid state via Li‐O bridges and shows a hindered rotation of its tert‐butyl group.  相似文献   

12.
Polymorphs α, β, and γ of Ga2O3 having hexagonal (corundum‐type), monoclinic and cubic (spinel‐type) structure, respectively, were prepared in a high‐surface‐area form, and characterized by powder X‐ray diffraction. Nitrogen adsorption at 77 K showed these gallia samples to have specific surface areas of 77 (α‐Ga2O3), 40 (β‐Ga2O3) and 120 m2 g?1 (γ‐Ga2O3). Fourier transform infrared spectroscopy of adsorbed carbon monoxide (at 77 K) and pyridine (at room temperature) showed that the three gallia polymorphs have a very similar surface Lewis acidity, regardless of their different crystal structures. This Lewis acidity was assigned, mainly, to coordinatively unsaturated tetrahedral Ga3+ ions situated on the surface of the small crystallites which constitute the different metal oxide varieties. Ga3+···CO adducts formed after CO adsorption gave (in all cases) a characteristic C–O stretching band at 2195–2200 cm?1, while Lewis‐type adducts formed with adsorbed pyridine were characterized by IR absorption bands at 1610–1612 and 1446–1450 cm?1. The three (partially hydroxylated) gallia polymorphs showed also a very weak Brønsted acidity, which they manifested by forming hydrogen‐bonded adducts with both CO and pyridine; however no protonation of adsorbed pyridine occurred.  相似文献   

13.
We report the time‐resolved supramolecular assembly of a series of nanoscale polyoxometalate clusters (from the same one‐pot reaction) of the form: [H(10+m)Ag18Cl(Te3W38O134)2]n, where n=1 and m=0 for compound 1 (after 4 days), n=2 and m=3 for compound 2 (after 10 days), and n=∞ and m=5 for compound 3 (after 14 days). The reaction is based upon the self‐organization of two {Te3W38} units around a single chloride template and the formation of a {Ag12} cluster, giving a {Ag12}‐in‐{W76} cluster‐in‐cluster in compound 1 , which further aggregates to cluster compounds 2 and 3 by supramolecular Ag‐POM interactions. The proposed mechanism for the formation of the clusters has been studied by ESI‐MS. Further, control experiments demonstrate the crucial role that TeO32?, Cl?, and Ag+ play in the self‐assembly of compounds 1 – 3 .  相似文献   

14.
The particularity of metalloid clusters as a special kind of metal atom cluster is described. For the first time such metalloid clusters are investigated in the gas phase by means of FT/ICR–mass spectrometry, the results of which show that metalloid clusters represent a bridge between the bulk metal and metal compounds that can be found in solution after oxidation of the bulk metal. The metalloid clusters presented herein are [Ga19R6] (R=C(SiMe3)3), and SiAl14Cp*6 and the precursor Al4Cp*4 (Cp*= 5-C5Me5).  相似文献   

15.
The new MOF Ga‐MIL‐53‐PDA [Ga(OH)(O2C‐C8H8‐CO2)] · H2O ( 1 ) was synthesized by a hydrothermal reaction of gallium nitrate, 1,4‐phenylenediacetic acid (H2PDA) and sodium hydroxide at 100 °C for 24 h. The product is a structural analogue of the archetypical MIL‐53 framework. Its crystal structure was determined by Rietveld refinement of powder X‐ray diffraction (PXRD) data. Furthermore 1,4‐phenylenedipropionic acid (H2PDP) was employed for further synthesis, which resulted in the dense layered coordination polymers [Ga2(OH)4(O2C‐C10H12‐CO2)] ( 2 ) and [Ga(OH)(O2C‐C10H12‐CO2)] ( 3 ), for which accurate structural models could be established. All compounds were fully characterized and tested regarding potential breathing behavior. Most remarkably, Ga‐MIL‐53‐PDA showed a subtle flexibility upon de/‐rehydration also confirming its porosity, but no drastic structural changes were observed.  相似文献   

16.
Two new non‐metallic filled β‐manganese phases M2Ga6Te10 (M: Li, Na) are obtained as black, homogeneous, microcristalline samples as well as single crystals by direct reaction of the elements. According to the single crystal structure determinations both compounds crystallize in space group R32 (No. 155, Z = 2) with the lattice constants: a = 1436.9(2), c = 1759.0(4) pm (T = 180 K, Li2Ga6Te10) and a = 1458(1) pm, c = 1776.1(4) pm (T = 290 K, Na2Ga6Te10). Their structures are characterized by tetrahedral close packings of Te2–, corresponding to the arrangement of Mn atoms in β‐Mn. While Ga3+ ions are distributed in an ordered way over 12% of the tetrahedral holes, the M+ ions occupy all distorted octahedral (“metaprismatic”) holes. As the Li+ ions are too small they occupy off‐center positions inside the metaprisms. Positions with the strongest off‐centering can only be refined on the basis of a split model. MAS‐NMR measurements, including multiple quantum NMR, allowed the two different crystallographic M+ sites to be distinguished unambigously by separate 7Li and 23Na signals, respectively. The assignment of the NMR signals was supported by measurements of samples in which Li+ was partly substituted by larger cations (Sn2+, Pb2+).  相似文献   

17.
A series of Eu2+‐, Ce3+‐, and Tb3+‐doped Ca2Ga2SiO7 phosphors is synthesized by using a high‐temperature solid‐state reaction. The powder X‐ray diffraction and structure refinement data indicate that our prepared phosphors are single phased and the phosphor crystalizes in a tetrahedral system with the ${P\bar 42m}$ (113) space group. The Eu2+‐ and Ce3+‐doped phosphors both have broad excitation bands, which match well with the UV light‐emitting diodes chips. Under irradiation of λ=350 nm, Ca2Ga2SiO7:Eu2+ and Ca2Ga2SiO7:Ce3+, Li+ have green and blue emissions, respectively. Luminescence of Ca2Ga2SiO7:Tb3+, Li+ phosphor varies with the different Tb3+ contents. The thermal stability and energy‐migration mechanism of Ca2Ga2SiO7:Eu2+ are also studied. The investigation results indicate that the prepared Ca2Ga2SiO7:Eu2+ and Ca2Ga2SiO7:Ce3+, Li+ samples show potential as green and blue phosphors, respectively, for UV‐excited white‐light‐emitting diodes.  相似文献   

18.
Recently the metalloid cluster compound [Ge9Hyp3]? ( 1 ; Hyp=Si(SiMe3)3) was oxidatively coupled by an iron(II) salt to give the largest metalloid Group 14 cluster [Ge18Hyp6]. Such redox chemistry is also possible with different transition metal (TM) salts TM2+ (TM=Fe, Co, Ni) to give the TM+ complexes [Fe(dppe)2][Ge9Hyp3] ( 3 ; dppe=1,2‐bis(diphenylphosphino)ethane), [Co(dppe)2][Ge9Hyp3] ( 4 ), [Ni(dppe)(Ge9Hyp3)] ( 5 ) and [Ni(dppe)2(Ge9Hyp3)]+ ( 6 ). Such a redox reaction does not proceed for Mn, for which a salt metathesis gives the first open shell [Hyp3Ge9‐M‐Ge9Hyp3] cluster ( 2 ; M=Mn). The bonding of the transition metal atom to 1 is also possible for Ni (e.g., compound 6 ), in which one or even two nickel atoms can bind to 1 . In contrast to this in case of the Fe and Co compounds 3 and 4 , respectively, the transition‐metal atom is not bound to the Ge9 core of 1 . The synthesis and the experimentally determined structures of 2 – 6 are presented. Additionally the bonding within 2 – 6 is analyzed and discussed with the aid of EPR measurements and quantum chemical calculations.  相似文献   

19.
The novel title compound, [(CH3)4N]2[Ta6Br12(H2O)6]Br4·2H2O, with a [Ta6Br12]2+ cluster unit, has been prepared and structurally characterized. The compound crystallizes in space group C2/c, with a twofold axis passing through the cluster and the centre of symmetry located between the clusters. The nearest neighbouring cluster units are aligned along the crystallographic c axis, forming a one‐dimensional chain pattern.  相似文献   

20.
Chemistry that uses metalloid tin clusters as a starting material is of fundamental interest towards understanding the reactivity of such compounds. Since we identified {Sn10[Si(SiMe3)3]4}2? 7 as an ideal candidate for such reactions, we present a further step in the understanding of metalloid tin cluster chemistry. In contrast to germanium chemistry, ligand elimination seems to be a major reaction channel, which leads to the more open metalloid cluster {Sn10[Si(SiMe3)3]3}? 9 , in which the Sn core is only shielded by three Si(SiMe3)3 ligands. Compound 9 is obtained through different routes and is crystallised together with two different countercations. Besides the structural characterisation of this novel metalloid tin cluster, the electronic structure is analysed by 119Sn Mössbauer spectroscopy. Additionally, possible reaction pathways are discussed. The presented first step into the chemistry of metalloid tin clusters thus indicates that, with respect to metalloid germanium clusters, more reaction channels are accessible, thereby leading to a more complex reaction system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号