首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possibility to synthesize and isolate different types of bismuth polyanions by dissolving various intermetallic precursors (binary samples from A‐Bi or ternary samples from A‐A'‐Bi systems, A and A' = K, Rb, Cs) in ethylenediamine or dimethylform amide in the presence of sequestering agents (2, 2, 2‐crypt or 18‐crown‐6) was investigated. The crystals of (2, 2, 2‐crypt‐K)2Bi4 ( 1 ) and (2, 2, 2‐crypt‐Rb)2Bi4 ( 2 ) compound were obtained from such solutions, the latter for the first time, and their structures were determined. The two compounds are isostructural (P1, Z=1, a = 11.052(2) Å, b = 11.370(2) Å, c = 11.698(2) Å, α = 61.85(3) °, β = 82.58(3) °, γ = 81.87(3) °, R1 = 0.058, wR2 = 0.149 for 1 and a = 11.181(2) Å, b = 11.603(2) Å, c = 11.740(2) Å, α = 61.96(3) °, β = 81.45(3) °, γ = 82.26(3) °, R1 = 0.041, wR2 = 0.109) and contain Bi42— square planar cluster anions and cryptated alkali metal cations. In the case of the presence of 18‐crown‐6 the Laves phases ABi2 (A = K, Rb, Cs) could be isolated from the solutions. A mechanism for the formation of ABi2 is proposed.  相似文献   

2.
Alkaline Metal Stannide‐Silicates and ‐Germanates: ‘Double Salts’ with the Zintl Anion [Sn4]4— The crystal structures of the tetrelid tetrelates A12[Sn4]2[GeO4] (A = Rb/Cs: monoclinic, P21/c, a = 1289.1(2) / 1331.72(7), b = 2310.1(4)/ 2393.6(1), c = 1312.6(2)/ 1349.21(7) pm, β = 119.007(3)/ 118.681(1)°, Z = 4, R1 = 0.1049/0.0803) and Cs20[Sn4]2[SiO4]3 (monoclinic, Cc, a = 2331.9(1), b = 1340.1(2), c = 1838.9(2) pm, β= 102.61(3)°, R1 = 0.0763) contain the Zintl anions [Sn4]4— and isolated oxotetrelate ions [MO4]4— (M = Si, Ge). The high temperature form of CsSn crystallizes with the KGe type (cubic, P4¯3n, a = 1444.7(1) pm, R1 = 0.0395).  相似文献   

3.
Alkaline Metal Oxoantimonates: Synthesis, Crystal Structures, and Vibrational Spectroscopy of ASbO2 (A = K, Rb), A4Sb2O5 (A = K, Rb, Cs), and Cs3SbO4 The compounds ASbO2 (A = K/Rb; monoclinic, C2/c, a = 785.4(3)/799.6(1) pm, b = 822.1(4)/886.32(7) pm, c = 558.7(3)/559.32(5) pm, β = 124.9(1)/123.37(6)°, Z = 4) are isotypic with CsSbO2 and the corresponding bismutates. The structures of the antimonates A4Sb2O5 (A = K/Rb: orthorhombic, Cmcm, a = 394.9(1)/407.34(7) pm, b = 1807.4(1)/1893.5(1) pm, c = 636.34(9)/655.60(8) pm, Z = 2) and Cs4Sb2O5 (monoclinic, Cm, a = 1059.81(7) pm, b = 692.68(8) pm, c = 811.5(1) pm, β = 98.7(1)°, Z = 2) both contain the anion [O2SbOSbO2]4–. Cs3SbO4 (orthorhombic, Pnma, a = 1296.1(1) pm, b = 919.24(8) pm, c = 679.95(6) pm, Z = 4) crystallizes with the K3NO4 structure type.  相似文献   

4.
Alkaline Metal Arsenides A3As11 (A = Rb, Cs): Preparation and Crystal Structures Rb3As11 and Cs3As11 were synthesized from the elements and the crystal structures of the ordered room temperature form were characterized via single crystal x‐ray studies. In the Zintl phases the As atoms form chiral ufosan‐anions As with As‐As distances ranging from 238 to 248 pm. Like K3As11 Rb3As11 crystallizes with the Na3P11 structure type (orthorhombic, space group Pbcn, a = 1108.2(2), b = 1533.5(3), c = 1060.1(2) pm, Z = 4), whereas the Cs compound (monoclinic, space group C2/c, a = 1324.5(7), b = 1524.5(9), c = 1937.2(11) pm, β = 95.29(1)°, Z = 8) forms a new structure type. The crystallographic relationship between the two structure types and the anion packings in the plastic crystalline high temperature forms are discussed.  相似文献   

5.
Rubidium und Caesium Compounds with the Isopolyanion [Ta6O19]8– – Synthesis, Crystal Structures, Thermogravimetric and Vibrational Spectrocopic Analysis of the Oxotantalates A8[Ta6O19] · n H2O (A = Rb, Cs; n = 0, 4, 14) The compounds A8[Ta6O19] · n H2O (A = Rb, Cs; n = 0, 4, 14) contain the isopoly anion [Ta6O19]8–, which consists of six [TaO6] octahedra connected via corners to form a large octahedron. They transform into each other by reversible hydratation/dehydratation processes, as shown from thermoanalytic measurements (TG/DSC), and show also structural similarities. Cs8[Ta6O19] (tetragonal, I4/m, a = 985.9(1) pm, c = 1403.3(1) pm, Z = 2), the isotypic phases A8[Ta6O19] · 14 H2O (A = Rb/Cs; monoclinic, P21/n, a = 1031.30(6)/1055.4(1) pm, b = 1590.72(9)/1614.9(6) pm, c = 1150.43(6)/1171.4(1) pm, β = 100.060(1)/99.97(2)°, Z = 2) and Rb8[Ta6O19] · 4 H2O (monoclinic, C2/c, a = 1216.9(4) pm, b = 1459.2(5) pm, c = 1414.7(4) pm, β = 90.734(6)°, Z = 4) have been characterised on the basis of single crystal x‐ray data. Furthermore the RAMAN spectra allow a detailled comparison of the hexatantalate ions in the four compounds.  相似文献   

6.
Using the reduction of tin oxides with the elemental alkaline metals rubidium and cesium, stannide stannates have been synthesized which contain Zintl anions [Sn4]4— (i.e. Sn—I) and isolated oxostannate ions [SnO3]4— (i.e. Sn+II) together with further oxide ions for charge compensation. The crystal structures of the three compounds A23.6Sn7.4O13.2 = A23.6[Sn4][SnO3]3.4[O]3 (A = Rb 1a : monoclinic, P21/c, a = 2174.2(6), b = 1137.0(6), c = 2373.6(6) pm, β = 116.11(2)°, Z = 4, R1 = 0.056; A = Cs 1b : monoclinic, P21/c, a = 2042.6(6), b = 1185.4(3), c = 2481.1(7) pm, β = 97.06(2)°, Z = 4, R1 = 0.075) and Cs48Sn20O21 = Cs48[Sn4]4[SnO3]4[O]7[O2] ( 2 monoclinic, P2/c, a = 1701.8(3), b = 877.4(2), c = 4556.9(7) pm, β= 101.47(1)°, R1 = 0.093) have been determined on the basis of single crystal data. The transparency of the compounds allowed the recording of raman spectra of the anion [Sn4]4—. The 119Sn Moessbauer spectrum of the rubidium compound shows a singulet in good agreement with RbSn, overlapping a doublet caused by Sn2+ in the asymmetrical environment of the strongly electronegative oxygen ligands of SnO.  相似文献   

7.
Complexes of Monovalent Dibenzo‐18‐crown‐6 Cations with Triiodide as Anions The new polyiodides [NH4(db18c6)]2(I3)2 ( 1 ), [NH4(db18c6)](db18c6)I3 ( 2 ), [Na1/2(db18c6)H2O]2I3 ( 3 ), [Rb(db18c6)]I3 ( 4 ), [Rb(db18c6)]2(I3)2 ( 5 ), [Cs(db18c6)]I3 ( 6 ), and [Cs2(db18c6)3][Cs(db18c6)3/2](I3)3 ( 7 ) were obtained from reactions of dibenzo‐18‐crown‐6 (db18c6) and iodine with NH4I, NaI, RbI, and CsI. Their crystal structures were determined by single‐crystal X‐ray diffraction. ( 1 ) M = NH4, ( 5 ) M = Rb: monoclinic, P21/n, a = 1409,67(8), b = 2211,63(14), c = 1627,16(10) pm, β = 101,030(5)°, Z = 4 (crystal data for M = NH4); ( 2 ): monoclinic, Pn, a = 1345,26(14), b = 773,82(4), c = 2095,10(20) pm, β = 94,439(8)°, Z = 2; ( 3 ): orthorhombic, Pnaa, a = 931,59(13), b = 2213,3(5), c = 2223,9(4) pm, Z = 4; ( 4 ): monoclinic, P21/n, a = 999,50(6), b = 1711,33(10), c = 1517,45(9) pm, β = 99,021(5)°, Z = 4; ( 6 ): triclinic, , a = 705,16(9), b = 1137,93(14), c = 1678,90(20) pm, α = 73,719(10), β = 79,782(10), γ = 83,669(10)°, Z = 2; ( 7 ): triclinic, , a = 1519,25(6), b = 1702,49(7), c = 2136,41(9) pm, α = 102,641(3), β = 101,989(3), γ = 91,911(3)°, Z = 2. 1 : 1 cations centered by M, [M(db18c6)]+, are found in the structures of ( 1 – 6 ). In contrast, the triple decker cation found in ( 7 ) is less common. The crystal structures are completed by mostly asymmetrically linear I3? anions.  相似文献   

8.
Single Crystal Structure Determinations of the Cubic High Pressure Elpasolites Rb2LiFeF6 and Cs2NaFeF6: Pressure-Distance Paradox without Change of Coordination Number At single crystals of metastable high pressure phases of Rb2LiFeF6 (a = 824.4 pm) and Cs2NaFeF6 (a = 873,9 pm) the parameters of the cubic elpasolite structure (Fm3 m, Z = 4) were determined by X-ray methods. Compared to the 12L-structures of the normal pressure phases (R3 m, hex. Z = 6) only the distances within the 12-coordination, Rb? F = 291.7 resp. Cs? F = 309.9 pm, are compressed by 2–3%. However, the octahedral distances Fe? F = 194.6 pm and Li? F = 217.6 pm resp. Fe? F = 194.9 pm and Na? F = 242.0 pm, are enlarged by 1–4%, though there was no increase in coordination number. This paradoxical behaviour is discussed. Difference Fourier syntheses reveal disorder only for the lithium positions in Rb2LiFeF6, which are 30 pm off-center, corresponding to a splitting of distances Li? F into 188, 247 and 4 × 220 pm.  相似文献   

9.
Sulfur Bridged Copper Complexes with dye Ligands By a three step synthesis the dye Et2N-C6H4-NN-C6H4-SSiMe3 ( 1 ) (azo-SSiMe3) can be prepared, which reacts with copper(I) chloride under the cleavage of Me3SiCl forming different sulphur bridged complexes. Depending on the presence of different phosphine ligands the compounds [Cu2(S-azo)2(PEt3)3] ( 2 ), [Cu2(S-azo)2(PnPr3)3] ( 3 ) and [Cu3(S-azo)3(PPh3)4] ( 4 ) can be obtained. These as well as the silylated dye 1 could be isolated and characterised as single crystals ( 1 : space group , a = 769, 2(2) pm, b = 943, 0(2) pm, c = 1419, 4(3) pm, α = 89, 09(3)°, β = 76, 40(3)°, γ = 87, 40(3)°, Z = 2; 2 : space group P21/c, a = 1142, 3(2) pm, b = 2233, 7(5) pm, c = 2391, 8(5) pm, β = 102, 84(3)°, Z = 4; 3 : space group P21/c, a = 1076, 0(2) pm, b = 1858, 4(4) pm, c = 3284, 1(7) pm, β = 95, 10(3)°, Z = 4; 4 : space group , a = 1353, 9(3) pm, b = 1615, 8(3) pm, c = 29966, 6(3) pm, α = 92, 24(3)°, β = 97, 48(3)°, γ = 98, 83(3)°, Z = 2). The UV-VIS spectra of 1 - 4 are dominated by a strong absorption of the diethylamino azobenzene group. Compared to 1 compounds 2 and 3 show a strong bathochromic shift of the absorption maximum, 4 shows a weaker shift.  相似文献   

10.
The Oxoantimonates(III) Rb2Sb8O13 and Cs8Sb22O37: New Framework and Layer Structures with ‘Lone‐Pair’ Cations The oxoantimonates(III) Rb2Sb8O13 and Cs8Sb22O37 were synthezised from Sb2O3, the elemental alkali metals (A) and the hyperoxides (AO2) at 500 °C. The crystal structures of Rb2Sb8O13 (monoclinic, P21/m, a=743.7(12)pm, b=1724(3)pm, c=1380(2)pm, β=90.44(4) °, Z=4) and Cs8Sb22O37 (monoclinic, Cc, a=1299.93(11)pm, b=719.87(6)pm, c=3089.9(3)pm, β=96.00(2) °, Z=2) exhibit complex layer (Rb) and framework oxoantimonate ions (Cs), with the SbIII cation, due to its stereochemically active ‘lone‐pair’, in ψ‐tetrahedral (CN=3) to ψ‐trigonal‐bipyramidal (CN=4) coordination by O.  相似文献   

11.
On ?Lithovanadates”?: Rb2[LiVO4] and Cs2[LiVO4] By heating of well ground mixtures of the binary oxides [A2O, Li2O, V2O5, A : Li: V = 2.2 : 1.1 : 1.0 (A = Rb, Cs); Ni-tube, 750° 25 d] we obtained Rb2[LiVO4] and Cs2[LiVO4] colourless, orthorhombic single crystals. We found a new type of ?Lithovanadate”?-structure: space group Cmc21; a = 587.9(1), b = 1170.1(1), c = 793.3(1) pm, Z = 4 (A = Rb) bzw. a = 610.5(1), b = 1222.6(3), c = 815.5(2) pm, Z = 4 (A = Cs). The structure was determined by four-circle diffractometer data [MoKα -radiation; 997 from 1157 I0(hkl), R = 7.75%, Rw = 5.54% (A = Rb); 686 from 686 I0(hkl), R = 6.97%, Rw = 4.20% (A = Cs)] parameters see text. The Madelung part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECoN, these via Mean Fictive Ionic Radii, MEFIR, have been calculated.  相似文献   

12.
The reactions of KCl, [NH4]2[SO4], Rb2[CO3], and Cs2[CO3] with fuming sulfuric acid (65 % SO3) yielded colorless and moisture sensitive crystals of K[HS2O7] (monoclinic, P21/c (no. 14), Z = 4, a = 716.67(3) pm, b = 1043.57(4) pm, c = 828.78(3) pm, β = 107.884(1)°, V = 589.89(4) × 106 pm3), [NH4][HS2O7] (monoclinic, P21/c (no. 14), Z = 4, a = 729.29(1) pm, b = 1079.73(1) pm, c = 843.26(1) pm, β = 106.397(1)°, V = 637.01(1) × 106 pm3), Rb[HS2O7] (monoclinic, P21/c (no. 14), Z = 4, a = 724.49(2) pm, b = 1073.19(3) pm, c = 852.01(3) pm, β = 106.534(1)°, V = 635.06(3) × 106 pm3), and Cs[HS2O7] (triclinic, P$\bar{1}$ (no. 2), Z = 2, a = 537.61(3) pm, b = 784.71(4) pm, c = 867.93(4) pm, α = 94.214(2)°, β = 103.138(2)°, γ = 105.814(2)°, V = 339.47(3) × 106 pm3). Colorless crystals of [NO][HS2O7] (monoclinic, P21/c (no. 14), Z = 4, a = 739.90(4) pm, b = 1048.00(5) pm, c = 830.97(4) pm, β = 106.985(2)°, V = 106.985(2) × 106 pm3) were obtained as a side product from the reaction of [NH4]2[Rh(NO2)4] with oleum (65 % SO3) in the ionic liquid [BMIm][OTf]. The crystal structures of K[HS2O7], [NH4][HS2O7], [NO][HS2O7], and Rb[HS2O7] show the [HS2O7] ions linked into dimers by strong hydrogen bonds. Contrastingly, in the crystal structure of Cs[HS2O7] the [HS2O7] ions are connected to infinite chains. Raman spectra were recorded for M[HS2O7] (M = K, Rb, Cs).  相似文献   

13.
The reaction of copper(I) chloride with 6‐aza‐2‐thiothymine (ATT, 1 ) and triphenylphosphane in methanol/chloroform gives [(ATT)CuCl(PPh3)] ( 2 ) as a neutral complex. [(ATT)Ag(NO3)(PPh3)2]·MeOH ( 3 ) can be obtained by the reaction of 1 with silver(I) nitrate and triphenylphosphane in methanol/chloroform in excellent yields and the single crystals of 3 can be obtained from acetonitril solution. Both complexes were characterized by infrared spectroscopy, elemental analyses as well as by X‐ray diffraction studies. Crystal data for 2 at —80 °C: space group I2/a with a = 1859.3(1), b = 1143.2(1), c = 2208.2(1) pm, β = 104.84(1)°, Z = 8, R1 = 0.0355 and for 3 at —80 °C: space group P21/c with a = 1344.1(1), b = 1553.6(1), c = 1977, 3(3) pm, β = 105.26(1)°, Z = 4, R1 = 0.0436.  相似文献   

14.
Pnictogenidostannates(IV) with Discrete Tetrahedral Anions: New Representatives (E1)4(E2)2[Sn(E15)4] (with E1 = Na, K; E2 = Ca, Sr, Ba; E15 = P, As, Sb, Bi) of the Na6[ZnO4] Type and the Superstructure Variant of K4Sr2[SnAs4] The silvery to dark metallic lustrous compounds (E1)4(E2)2[Sn(E15)4] (E1 = Na, K; E2 = Ca, Sr, Ba; E15 = P, As, Sb, Bi) were prepared from melts of stoichiometric mixtures of the elements. They crystallize in the Na6[ZnO4]‐type structure (hexagonal, space group: P63mc, Z = 2; Na4Ca2[SnP4]: a = 938.94(7), c = 710.09(8) pm; K4Sr2[SnAs4]: a = 1045.0(2), c = 767.0(1) pm; K4Ba2[SnP4]: a = 1029.1(6), c = 780.2(4) pm; K4Ba2[SnAs4]: a = 1051.3(1), c = 795.79(7) pm; K4Ba2[SnSb4]: a = 1116.9(2), c = 829.2(1) pm; K4Ba2[SnBi4]: a = 1139.5(2), c = 832.0(2) pm). The anionic partial structure consists of tetrahedra [Sn(E15)4]8– orientated all in the same direction along [001]. In the cationic partial structure one of the two cation positions is occupied statistically by alkali and alkaline earth metal atoms. Up to now only for K4Sr2[SnAs4] a second modification could be isolated, forming a superstructure type with three times the unit cell volume (hexagonal, space group: P63cm, Z = 6; a = 1801.3(2), c = 767.00(9) pm) and an ordered cationic partial structure.  相似文献   

15.
Synthesis, crystal structure, thermal stability, and electronic band structure of four new metal antimonides AMSb (A = Rb, Cs; M = Zn, Cd) are reported. CsZnSb and RbZnSb crystallize in the hexagonal ZrBeSi structure type, in a P63/mmc space group (no. 194, Z = 2) and unit cell dimensions of a = 4.5588(2)/4.5466(4) Å and c = 11.9246(6)/11.0999(10) Å. CsCdSb and RbCdSb crystallize in the tetragonal PbFCl structure type in a P4/nmm space group (no. 129; Z = 2) and unit cell parameters of a = 4.8884(5)/4.8227(3) Å and c = 8.8897(9)/8.5492(7) Å. All four compounds are air- and water-sensitive and are shown through DSC measurements to decompose between 975 K and 1060 K. Analysis of the calculated electronic band structure shows that the Zn-containing antimonides are topologically trivial narrow bandgap semiconductors, whereas Cd-containing compounds exhibit a band inversion along Γ-Z direction.  相似文献   

16.
Cs5Sb8 and β‐CsSb: Two New Binary Zintl Phases The anion in the crystal structure of the new Zintl phase Cs5Sb8 synthesized from the elements (monoclinic, space group P21/c, a = 724.4(2) pm, b = 1135.2(3) pm, c = 2750.9(8) pm, β = 96.663(5)°, Z = 4) consists of two and three bonded Sb atoms, which are connected to form puckered nets with 5 and 28 membered rings. β‐CsSb (monoclinic, space group P21/c, a = 1519.4(3) pm, b = 734.0(2) pm, c = 1432.2(2) pm, β = 113.661(3)°, Z = 4) crystallizes with a superstructure of the LiAs structure type. As in the α phase (NaP type), twobonded Sb atoms form neary ideal 41 screx chains. In contrast to the α phase the helices have opposite chirality.  相似文献   

17.
Crystal Structures of the Polyselenides [Cs(18-Crown-6)]2Se5 · DMF, [Rb(222-Crypt)]2Se6, [Ba(15-Crown-5)2]Se6 · DMF, and [Na(12-Crown-4)2]Se7 . The title compounds have been prepared by reactions of the corresponding diselenides with excess selenium in the presence of crown ethers in dimethylformamide solutions, forming black crystals. [Cs(18-Crown-6)]2Se5 · DMF: Space group P21/m, Z = 2, 2 194 observed unique reflections, R = 0.119. Lattice dimensions at 20°C: a = 1 041.2; b = 1 496.3; c = 1 459.7 pm; β = 100.39°. The compound forms an ionic triple with Cs…Se-contacts between 374 and 381 pm. [Rb(222-Crypt)]2Se6: Space group P1 , Z = 2, 7 405 observed unique reflections, R = 0.056. Lattice dimensions at – 70°C: a = 1 106.8; b = 1 460.8; c = 1 718.8 pm; α = 89.22°; β = 86.65°; γ = 71.53°. The compound contains Se62? chains without direct contact with each other. [Ba(15-Crown-5)2]Se6 · DMF: Space group P21/n, Z = 4, 2 680 observed unique reflections, R = 0.055. Lattice dimensions at – 80°C: a = 1 051.9; b = 1 322.4; c = 2 729.9 pm; β = 100.93°. The compound contains Se62? chains, which are isolated from each other by the cations and the included DMF molecules. [Na(12-Crown-4)2]2Se7: Space group P1 , Z = 2, 7 313 observed unique reflections, R = 0.042. Lattice dimensions at – 70°C: a = 1 260.9; b = 1 433.6; c = 1 462.9 pm; α = 80.27°; β = 78.60°; γ = 69.34°. The compound contains Se72? chains without direct contacts with each other.  相似文献   

18.
The reinvestigation of the pseudo‐binary systems MBr–BiBr3 (M = Rb, Cs) revealed two new phases with composition MBi2Br7. Both compounds are hygroscopic and show brilliant yellow color. The crystal structures were solved from X‐ray single crystal diffraction data. The isostructural compounds adopt a new structure type in the triclinic space group P$\bar{1}$ . The lattice parameters are a = 755.68(3) pm, b = 952.56(3) pm, c = 1044.00(4) pm, α = 76.400(2)°, β = 84.590(2)°, γ = 76.652(2)° for RbBi2Br7 and a = 758.71(5) pm, b = 958.23(7) pm, c = 1060.24(7) pm, α = 76.194(3)°, β = 83.844(4)°, γ = 76.338(3)° for CsBi2Br7. The crystal structures consist of M+ cations in anticuboctahedral coordination by bromide ions and bromidobismuthate(III) layers 2[Bi2Br7]. The 2D layers comprise pairs of BiBr6 octahedra sharing a common edge. The Bi2Br10 double octahedra are further connected by common vertices. The bismuth(III) atoms increase their mutual distance in the double octahedra by off‐centering so that the BiBr6 octahedra are distorted. The CsBi2Br7 type can be interpreted as a common hexagonal close sphere packing of M and Br atoms, in which 1/4 of the octahedral voids are filled by Bi atoms. The structure type was systematically analyzed and compared with alternative types of common packings. The existence of a compound with the suggested composition CsBiBr4 could not be verified experimentally.  相似文献   

19.
The Cubic Phases Na16(ARb6)Sb7, Compounds with the Anions A = Rb?, Na?, Au?, I? The novel compounds Na16(ARb6)Sb7 have been synthesized from the elements in sealed Nb ampoules at 873 K (A = Rb) and 823 K (A = I, Na, Au). They form brittle cuboctahedra (silver metallic; A = Rb) and irregular polyhedra (silver metallic lustre; A = Na, I; golden metallic lustre; A = Au). They rapidly decompose in moist air to gray products. Their crystal structures have been determined by single crystal X-ray crystallography (A = Rb: a = 1565.8(2) pm; A = I: a = 1563.3(2) pm; A = Na: a = 1562.6(2) pm; A = Au: a = 1560.7(2) pm). They crystallize cubically in the space group Fm3 m (no. 225) with Z = 4 formula units and are isotypic with Sc11Ir4. The compounds are ZINTL phases and their structures can be described as an eightfold defect variant of the Li3Bi type of structure (cF128-8; a = 2a′(Li3Bi)). The Sb atoms form a network of cuboctahedra, centered alternatingly by a SbNa8 cube or a ARb6 octahedron. Main structural features are the anions A? within the Rb6 octahedron. Supporting the existence of A? are the isotypical compounds with the more common anion forming elements (A = Au, I), as well as electrostatic potential considerations together with calculations of the volume increments. The semiconducting properties (Eg = 0.33 eV) of Na16(RbRb6)Sb7, as well as the diamagnetism χmol = ?508 × 10?6 cm3 mol?1, are in accordance with those to be expected from the Zintl concept.  相似文献   

20.
MAl2Ta35O70 (M = Na, K, Rb), Low-Valent Oxotantalates with Discrete Cuboctahedral Ta6O12 Clusters The title compounds were prepared by reducing Ta2O5 with tantalum and aluminium in the presence of alkali metal carbonates at 1650 K. NaAl2Ta35O70 was characterized by means of a single crystal X-ray structure determination: space group P 3, lattice parameters a = 780.15(7) pm, c = 2621.7(8) pm, Z = 1, 167 variables, RF = 0.048. The structure can be described in terms of a close packing of oxide ions with specific defects. The sequence of the layers is hhcchchcchh. The characteristic structural units are Ta6O12 clusters being substantially stabilized by Ta–Ta bonding (dTa–Ta = 279.3–283.3 pm, 14 electrons per cluster). The sodium cations occupy acentrically and statistically half of the anti-cuboctahedral sites. The compounds are semiconductors with band gaps Ea of 0.2 to 0.3 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号