首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxonitridoalumosilicates (so‐called sialons) MLn[Si4?xAlxOxN7?x] with M = Eu, Sr, Ba and Ln =Ho, Er, Tm, Yb were obtained by the reaction of the respective lanthanoid metal, the alkaline earth carbonates or europium carbonate, resp., AlN, “Si(NH)2” and MCl2 as a flux in a radiofrequency furnace at temperatures around 2100 °C. The compounds MLn[Si4?xAlxOxN7?x] are relevant for the investigation of substitutional effects on the materials properties due to their ability of tolerating a comparatively large phase width up to x ≈ 2.0(5). The crystal structures of the twelve compounds were refined from X‐ray single crystal data and X‐ray powder data and are found to be isotypic to the MYb[Si4N7] structure type. The compounds crystallize in space group P63mc (no. 186, hexagonal) and are made up of chains of so‐called starlike units [N[4](SiN3)4] or [N[4]((Si,Al)(O,N)3)4], respectively. These units are formed by four (Si,Al)(N/O)4 tetrahedra sharing a common central nitrogen atom. The structure refinement was performed utilizing an O/N‐distribution model according to Paulings rules, i.e. nitrogen was positioned on the four‐fold bridging site and nitrogen and oxygen were distributed equally on both of the two‐fold bridging sites, resulting in charge neutrality of the compound. The Si and Al atoms were distributed equally on their two crystallographic sites, referring to their elemental proportion in the compound, due to being poorly distinguishable by X‐ray methods. The chemical compositions of the compounds were derived from electron probe micro analyses (EPMA).  相似文献   

2.
Eu5F[SiO4]3 and Yb5S[SiO4]3: Mixed‐Valent Lanthanoid Silicates with Apatite‐Type of Structure By the reaction of Eu, EuF3, Eu2O3 with SiO2 in evacuated gold ampoules, using NaF as flux, at a temperature of 1000 °C for ten hours, dark‐red, platelet‐shaped single crystals of Eu5F[SiO4]3 are obtained. Similarly dark‐red, but pillar‐shaped single crystals of Yb5S[SiO4]3 are obtained by the reaction of Yb, Yb2O3 and S with SiO2 in the presence CsBr as flux in evacuated silica ampoules at 850 °C and an annealing time of seven days. Both compounds crystallize hexagonally (P63/m, Z = 2; Eu5F[SiO4]3: a = 954.79(9), c = 704.16(6) pm; Yb5S[SiO4]3: a = 972.36(9), c = 648.49(6) pm) in the case of Eu5F[SiO4]3 analogous to the mineral fluorapatite and for Yb5S[SiO4]3 as a bromapatite—type variety. The crystal structure containing isolated [SiO4]4— tetrahedra distinguishes two rare‐earth cation positions with coordination numbers of nine (M1) and seven (M2), in which the position M1 of the europium fluoride silicate is almost exclusively occupied by Eu2+ cations, whereas in ytterbium sulfide silicate it contains di‐ and trivalent Yb cations in the ratio 1 : 1. In both cases, however, the M2 position is only populated with M3+.  相似文献   

3.
The new compound Yb2+3—xPd12—3+xP7 x = 0.40(4)) was synthesized by sintering of a mixture of elemental components at 1100 °C with subsequent annealing at 800 °C. The crystal structure of Yb2+3—xPd12—3+xP7 was solved and refined from X‐ray single‐crystal diffraction data: space group P6¯, a = 10.0094(4)Å, c = 3.9543(2)Å, Z = 1; R(F) = 0.022 for 814 observed unique reflections and 38 refined parameters. The atomic arrangement reproduces a structure motif of the hexagonal Zr2Fe12P7 type in which one of the transition metal positions is substituted predominantly by ytterbium (Yb : Pd = 0.86(1) : 0.14). The ytterbium atoms are embedded in the 3D polyanion formed by palladium and phosphorus atoms. Two different environments for ytterbium atoms are present in the structure. Magnetic susceptibility measurements and XAS spectroscopy at the Yb LIII edge show the presence of ytterbium in two electronic configurations, 4?13 and 4?14. The following model was derived. Ytterbium atoms in the 3k site are in the 4?13 state, the two remaining positions contain ytterbium in intermediate‐valence states, giving totally 79 % ytterbium in the 4?13 electronic configuration.  相似文献   

4.
The oxonitridosilicate La7Sr[Si10N19O3] : Eu2+ and its substitutional variants RE8-xAEx[Si10N20-xO2+x] : Eu2+ with RE=La, Ce; AE=Ca, Sr, Ba and 0≤x≤2 were synthesized starting from REN, SrN/Ca3N2/Ba2N, SiO2, amorphous Si3N4 and Eu2O3 as doping agent at 1600 °C in a radiofrequency furnace. The crystal structure of La7Sr[Si10N19O3] was solved and refined based on single-crystal X-ray diffraction data. La7Sr[Si10N19O3] crystallizes in the orthorhombic space group Pmn21 (no. 31). The crystal structures of the isotypic compounds RE8-xAEx[Si10N20-xO2+x] were confirmed by Rietveld refinements based on powder X-ray diffraction data using the single-crystal data of La7Sr[Si10N19O3] as starting point. Crystal structure elucidation reveals a 3D network of vertex sharing SiN4 and SiN2(N1/2-x/4O1/2+x/4)2 (0≤x≤2) tetrahedra. When excited with UV to blue light, La7Sr[Si10N19O3] : Eu2+ shows amber luminescence with λem=612 nm and fwhm=84 nm/2194 cm−1, which makes it interesting for application in amber phosphor-converted light emitting diodes.  相似文献   

5.
The binary silicides Eu5Si3 and Yb3Si5 were prepared from the elements in sealed tantalum tubes and their crystal structures were determined from single crystal X-ray data: I4/mcm, a = 791.88(7) pm, c = 1532.2(2) pm, Z = 4, wR2 = 0.0545, 600 F2 values, 16 variables for Eu5Si3 (Cr5B3-type) and P62m, a = 650.8(2) pm, c = 409.2(1) pm, Z = 1, wR2 = 0.0427, 375 F2 values, 12 variables for Yb3Si5 (Th3Pd5 type). The new silicide Eu5Si3 contains isolated silicon atoms and silicon pairs with a Si–Si distance of 242.4 pm. This silicide may be described as a Zintl phase with the formula [5 Eu2+]10+[Si]4–[Si2]6–. The silicon atoms in Yb3Si5 form a two-dimensional planar network with two-connected and three-connected silicon atoms. According to the Zintl-Klemm concept the formula of homogeneous mixed-valent Yb3Si5 may to a first approximation be written as [3 Yb]8+[2 Si]2–[3 Si2–]6–. Magnetic susceptibility investigations of Eu5Si3 show Curie-Weiss behaviour above 100 K with a magnetic moment of 7.85(5) μB which is close to the free ion value of 7.94 μB for Eu2+. Chemical bonding in Eu5Si3 and Yb3Si5 was investigated by semi-empirical band structure calculations using an extended Hückel hamiltonian. The strongest bonding interactions are found for the Si–Si contacts followed by Eu–Si and Yb–Si, respectively. The main bonding characteristics in Eu5Si3 are antibonding Si12-π* and bonding Eu–Si1 states at the Fermi level. The same holds true for the silicon polyanion in Yb3Si5.  相似文献   

6.
Treatment of N,N′‐bis(aryl)formamidines (ArFormH), N,N′‐bis(2,6‐difluorophenyl)formamidine (DFFormH) or N,N′‐bis(2,6‐diisopropylphenyl)formamidine (DippFormH), with europium metal in CH3CN is an efficient synthesis of the divalent complexes: [{Eu(DFForm)2(CH3CN)2}2] ( Eu1 ) or [Eu(DippForm)2(CH3CN)4] ( Eu2 ). The synthetic method was extended to ytterbium, but the metal required activation by addition of Hg0. With DFFormH in CH3CN, [{Yb(DFForm)2(CH3CN)}2] ( Yb1 ) was obtained in good yield, and [Yb(DFForm)2(thf)3] ( Yb3 ) was obtained from a synthesis in CH3CN/THF. Thus, this synthetic method completely circumvents the use of either salt metathesis, or redox transmetallation/protolysis (RTP) protocols to prepare divalent rare‐earth formamidinates. Heating Yb1 in PhMe/C6D6 resulted in decomposition to trivalent products, including one from a CH3CN activation process. For a synthetic comparison, divalent ytterbium DFForm and DippForm complexes were synthesised by RTP reactions between Yb0, Hg(R)2 (R=Ph, C6F5), and ArFormH in THF, leading to the isolation of either [Yb(DFForm)2(thf)3] ( Yb3 ), or the first five coordinate rare‐earth formamidinate complex [Yb(DippForm)2(thf)] ( Yb4 b ), and, from adjustment of the stoichiometry, trivalent [Yb(DFForm)3(thf)] ( Yb6 ). Oxidation of Yb3 with benzophenone (bp), or halogenating agents (TiCl4(thf)2, Ph3CCl, C2Cl6) gave [Yb(DFForm)3(bp)] or [Yb(DFForm)2Cl(thf)2], respectively. Furthermore, the structural chemistry of divalent ArForm complexes has been substantially broadened. Not only have the highest and lowest coordination numbers for divalent rare‐earth ArForm complexes been achieved in Eu2 and Yb4 b , respectively, but also dimeric Eu1 and Yb1 have highly unusual ArForm bridging coordination modes, either perpendicular μ‐1κ(N:N′):2κ(N:N′) in Eu1 , or the twisted μ‐1κ(N:N′):2κ(N′:F′) DFForm coordination in Yb1 , both unprecedented in divalent rare‐earth ArForm chemistry and in the wider divalent rare‐earth amidinate field.  相似文献   

7.
Degradation of Coordination Polymers to the Monomer and Competition of Polymerization and Chemical Scissors on Carbazolates of Yb and Eu with N‐Phenylpiperazine The coordination polymers , Ln = Yb, Eu, Cbz = carbazolate anion, C12H8N, can be degraded by the use of strong N‐donor ligands like N‐phenylpiperazine (Phpip = (C6H5)C4H8NNH) as chemical scissors. The degradation process for the ytterbium containing polymer ends in the monomeric compound [Yb(Cbz)3(Phpip)2]·1/2Phpip and includes an oxidation step YbII → YbIII. Thus the circle of reactions of Yb metal with carbazole (CbzH) starting in liquid NH3 to the coordination polymer and ending with its degradation by the use of chemical scissors is resolved. Transformation on europium has been started on the base of both metals leading to coordination polymers of the same chemical formula. However already the prelude of reactions differs for Eu as the electride induced reaction of Eu metal with CbzH in liquid ammonia followed by Phpip treatment gives single crystalline [Eu2(Cbz)4(NH3)2(Phpip)4]·2Phpip. This dimeric molecule contains EuII and ligands of all reaction steps, NH3, Cbz, Phpip, and is thereby an interesting starting point for the resolution of polymer formation and degradation as well as a competition of these counter reactions.  相似文献   

8.
The compounds Yb1+xMg1—xGa4 (0 ≤ x ≤ 0.058) and YLiGa4 were synthesized by direct reaction of the elements in sealed niobium crucibles. The atomic arrangement of Yb1+xMg1—xGa4 (x = 0.058) represents a new structure type (space group Pm2, a = 4.3979(3)Å and c = 6.9671(7)Å) as evidenced by single crystal structure analysis and can be described as an ordered variant of CaIn2. YLiGa4 is isotypic to the ytterbium compound according to X‐ray Guinier powder data (a = 4.3168(1)Å and c = 6.8716(2)Å). Measurements of the magnetic susceptibility of both compounds reveal intrinsic diamagnetic behaviour, i.e., ytterbium in the 4f14 configuration for Yb1+xMg1—xGa4 (x = 0). From electrical resistivity data both compounds can be classified as metals. The compressibility of Yb1+xMg1—xGa4 (x = 0.058) as measured in diamond anvil cells by angle‐dispersive X‐ray diffraction is compatible with a valence change of the ytterbium atoms at high‐pressures and indicates a slight anisotropy which is in accordance with the structural organisation of the gallium network. X‐ray absorption spectra of the Yb LIII edge of Yb1+xMg1—xGa4 (x = 0.058) at pressures up to 25.0 GPa show a two‐peak structure which reveals the presence of Yb in the 4f14 and 4f13 states. The amount of ytterbium in the 4f13 state increases in two steps with progressing compression. The bonding analysis by means of the electron localization function reveals the Zintl‐like character of both compounds and confirms the 4f14 state for the majority of ytterbium atoms.  相似文献   

9.
The nitridosilicate CaLu[Si4N7–2xCxOx] (x≈0.3) was synthesized by carbothermal reduction and nitridation starting from CaH2, Lu2O3, graphite and amorphous Si3N4 at 1550 °C in a radiofrequency furnace. CaLu[Si4N7–2xCxOx] (x≈0.3) crystallizes isotypically to many previously known MIIMIIISi4N7 compounds in the space group P63mc, as was confirmed by Rietveld refinement based on powder X-ray diffraction data. Incorporation of carbon into the crystal structure as a result of the carbothermal synthesis route was confirmed by 13C and 29Si MAS NMR spectroscopy. For the first time in the MIIMIIISi4N7 compound class, complementary EDX measurements suggest that simultaneous incorporation of oxygen compensates for the negative charge excess induced by carbon, resulting in an adjusted sum formula, CaLu[Si4N7–2xCxOx] (x≈0.3). When excited with UV-to-blue light, CaLu[Si4N7–2xCxOx] (x≈0.3) shows an emission maximum in the blue spectral region (λem=484 nm; fwhm=4531 cm−1) upon doping with Ce3+, whereas Eu2+-doped CaLu[Si4N7–2xCxOx] (x≈0.3) exhibits a yellow-green emission (λem=546 nm; fwhm=3999 cm−1).  相似文献   

10.
11.
The reaction of 2‐aldehyde‐8‐hydroxyquinoline, histamine, and YbX3 · 6H2O (X = NO3, ClO4) affords two ytterbium complexes [Yb(nma)2] · ClO4 · 2CH2Cl2 ( 1 ) and [Yb(nma)(NO3)2(DMSO)] · CH3OH ( 2 ) (Hnma = N‐(2‐(8‐hydroxylquinolinyl)methane(2‐(4‐imidazolyl)ethanamine))). The crystal structures were determined by X‐ray diffraction and it has been revealed that the anions have played important role in the assembly. In the case of 1 , the Yb3+ ions are completely encapsulated by two nma ligands with uncoordinated perchlorate anion balancing the positive charge. In the case of 2 , the Yb3+ ions are ligated by the ligand, oxygen atoms of the nitrate ion, and DMSO. Both complexes exhibit essential NIR luminescence of Yb3+ ions.  相似文献   

12.
The preparation and characterization of a series of complexes of the Yb and Eu cations in the oxidation state II and III with the tetradentate N,O‐donor tripodal ligands (tris(2‐pyridylmethyl)amine (TPA), BPA? (HBPA=bis(2‐pyridylmethyl)(2‐hydroxybenzyl)amine), BPPA? (HBPPA=bis(2‐pyridylmethyl)(3.5‐di‐tert‐butyl‐2‐hydroxybenzyl)amine), and MPA2? (H2MPA=(2‐pyridylmethyl)bis(3.5‐di‐tert‐butyl‐2‐hydroxybenzyl)amine) is reported. The X‐ray crystal structures of the heteroleptic Ln2+ complexes [Ln(TPA)I2] (Ln=Eu, Yb) and [Yb(BPA)I(CH3CN)]2, of the Ln2+ homoleptic [Ln(TPA)2]I2 (Ln=Sm, Eu, Yb) and [Eu(BPA)2] complexes, and of the Ln3+ [Eu(BPPA)2]OTf and [Yb(MPA)2K(dme)2] (dme=dimethoxyethane) complexes have been determined. Cyclic voltammetry studies carried out on the bis‐ligand complexes of Eu3+ and Yb3+ show that the metal center reduction occurs at significantly lower potentials for the BPA? ligand as compared with the TPA ligand. This suggests that the more electron‐rich character of the BPA? ligand results in a higher reducing character of the lanthanide complexes of BPA? compared with those of TPA. The important differences in the stability and reactivity of the investigated complexes are probably due to the observed difference in redox potential. Preliminary reactivity studies show that whereas the bis‐TPA complexes of Eu2+ and Yb2+ do not show any reactivity with heteroallenes, the [Eu(BPA)2] complex reduces CS2 to afford the first example of a lanthanide trithiocarbonate complex.  相似文献   

13.
The superbulky deca‐aryleuropocene [Eu(CpBIG)2], CpBIG=(4‐nBu‐C6H4)5‐cyclopentadienyl, was prepared by reaction of [Eu(dmat)2(thf)2], DMAT=2‐Me2N‐α‐Me3Si‐benzyl, with two equivalents of CpBIGH. Recrystallizyation from cold hexane gave the product with a surprisingly bright and efficient orange emission (45 % quantum yield). The crystal structure is isomorphic to those of [M(CpBIG)2] (M=Sm, Yb, Ca, Ba) and shows the typical distortions that arise from CpBIG???CpBIG attraction as well as excessively large displacement parameter for the heavy Eu atom (Ueq=0.075). In order to gain information on the true oxidation state of the central metal in superbulky metallocenes [M(CpBIG)2] (M=Sm, Eu, Yb), several physical analyses have been applied. Temperature‐dependent magnetic susceptibility data of [Yb(CpBIG)2] show diamagnetism, indicating stable divalent ytterbium. Temperature‐dependent 151Eu Mössbauer effect spectroscopic examination of [Eu(CpBIG)2] was examined over the temperature range 93–215 K and the hyperfine and dynamical properties of the EuII species are discussed in detail. The mean square amplitude of vibration of the Eu atom as a function of temperature was determined and compared to the value extracted from the single‐crystal X‐ray data at 203 K. The large difference in these two values was ascribed to the presence of static disorder and/or the presence of low‐frequency torsional and librational modes in [Eu(CpBIG)2]. X‐ray absorbance near edge spectroscopy (XANES) showed that all three [Ln(CpBIG)2] (Ln=Sm, Eu, Yb) compounds are divalent. The XANES white‐line spectra are at 8.3, 7.3, and 7.8 eV, for Sm, Eu, and Yb, respectively, lower than the Ln2O3 standards. No XANES temperature dependence was found from room temperature to 100 K. XANES also showed that the [Ln(CpBIG)2] complexes had less trivalent impurity than a [EuI2(thf)x] standard. The complex [Eu(CpBIG)2] shows already at room temperature strong orange photoluminescence (quantum yield: 45 %): excitation at 412 nm (24270 cm?1) gives a symmetrical single band in the emission spectrum at 606 nm (νmax=16495 cm?1, FWHM: 2090 cm?1, Stokes‐shift: 2140 cm?1), which is assigned to a 4f65d1→4f7 transition of EuII. These remarkable values compare well to those for EuII‐doped ionic host lattices and are likely caused by the rigidity of the [Eu(CpBIG)2] complex. Sharp emission signals, typical for EuIII, are not visible.  相似文献   

14.
Ternary Nitridoborates. 2. Synthesis, Crystal Structure, and Vibrational Spectra of New Ternary Compounds with the [N–B–N]3– Anion The isotypic compounds LiM4[BN2]3 (M = Ca, Sr, Ba, Eu) and NaM4[BN2]3 (M = Sr, Ba) are formed as colorless to pale yellow prismatic crystals (black with Eu) by reaction of the binary components Li3N, M3N2, EuN and Na, NaN3, Ba3N2 and BN in sealed niobium ampoules at 1375 and 1275 K, respectively. The linear anions [N–B–N]3– have bond lengths d(B–N) between 132.6 and 136.6 pm. Vibrational frequencies and force constants f(B–N) = 7.25–7.89 Ncm–1 reveal significant drifts related to bond length and effective anionic charge. The cubic crystal structures (Im3m (No. 229), Z = 2; LiM4[BN2]3: a(Ca) = 711.5 pm; a(Sr) = 745.6 pm; a(Eu) = 742.5 pm, a(Ba) = 788.0 pm and NaM4[BN2] 3 : a(Sr) = 756.8 pm; a(Ba) = 791.7 pm)) are stuffed derivatives of the β‐PtHg4 structure type, and the range of existence of this cubic structure is derived from the molar volume and the ionic radii. The cations form a partial structure of centered cubes E1(E2)8 which are condensed to a [E1(E2)8/2] network (E1 = Li, Na; E2 = Ca, Sr, Ba, Eu). The remaining open cubes are filled by the [BN2]3– anions yielding two interpenetrating [E1(BN2)6/2] networks. Periodic Nodal Surfaces (PNS) of Im3m symmetry show the regions of different interactions.  相似文献   

15.
The Cluster Azides M2[Nb6Cl12(N3)6]·(H2O)4—x (M = Ca, Sr, Ba) The isotypic cluster compounds M2[Nb6Cl12(N3)6] · (H2O)4—x (M = Ca (1) , M = Sr (2) and M = Ba (3) ) have been synthesized by the reaction of an aequeous solution of Nb6Cl14 with M(N3)2. 1 , 2 and 3 crystallize in the space group Fd3¯ (No. 227) with the lattice constants a = 1990.03(23), 2015.60(12) and 2043, 64(11) pm, respectively. All compounds contain isolated 16e clusters whose terminal positions are all occupied by orientationally disordered azide ligands.  相似文献   

16.
The nitridoberylloaluminate Ba2[BeAl3N5]:Eu2+ and solid solutions Sr2−xBax[BeAl3N5]:Eu2+ (x=0.5, 1.0, 1.5) were synthesized in a hot isostatic press (HIP) under 50 MPa N2 atmosphere at 1200 °C. Ba2[BeAl3N5]:Eu2+ crystallizes in triclinic space group (no. 2) (Z=2, a=6.1869(10), b=7.1736(13), c=8.0391(14) Å, α=102.754(8), β=112.032(6), γ=104.765(7)°), which was determined from single-crystal X-ray diffraction data. The lattice parameters of the solid solution series have been obtained from Rietveld refinements and show a nearly linear dependence on the atomic ratio Sr : Ba. The electronic properties and the band gaps of M2[BeAl3N5] (M=Sr, Ba) have been investigated by a combination of soft X-ray spectroscopy and density functional theory (DFT) calculations. Upon irradiation with blue light (440–450 nm), the nitridoberylloaluminates exhibit intense orange to red luminescence, which can be tuned between 610 and 656 nm (fwhm=1922–2025 cm−1 (72–87 nm)). In contrast to the usual trend, the substitution of the smaller Sr2+ by larger Ba2+ leads to an inverse-tunable luminescence to higher wavelengths. Low-temperature luminescence measurements have been performed to exclude anomalous emission.  相似文献   

17.
M(SCN)2 (M = Eu, Sr, Ba): Crystal Structure, Thermal Behaviour, Vibrational Spectroscopy Single crystals of M(SCN)2 (M = Eu, Sr, Ba) have been obtained via metathesis of NaSCN and MCl2 (M = Eu, Sr, Ba) at 340 °C. The isotypic crystal structures of the thiocyanates M(SCN)2 (C2/c, Z = 4, Eu: a = 979.3(2), b = 660.8(1), c = 815.7(2) pm, β = 91.58(3)°, Rall = 0.0245, Sr: a = 985.5(2), b = 662.9(2), c = 819.6(2) pm, β = 91.29(3)°, Rall = 0.0435, Ba: a = 1018.8(2), b = 687.2(1), c = 852.2(1) pm, β = 92.43(2)°, Rall = 0.0392) contain alternating layers of M2+ and SCN. According to M(SCN)4/4(NCS)4/4 M2+ is eight‐coordinated by four sulfur and four nitrogen atoms forming a square antiprism. Thermal investigations show that the compounds melt without decomposition. Vibrational spectroscopic investigations are presented and discussed.  相似文献   

18.
The First Pyridylbenzimidazolates of the Lanthanides: Syntheses, Crystal Structure and Thermal Decomposition of NH4[Ln(N3C12H8)4] with Ln = Nd, Yb Transparent yellow crystals of the compounds NH4 [LnIII (N3C12H8)4] with Ln = Nd, Yb were obtained by solvent‐free reactions of the lanthanides neodymium and ytterbium with 2‐(2‐Pyridyl)‐benzimidazole. The bulk syntheses lead to isotypic compounds despite the different ionic radii of NdIII and YbIII exhibiting nitrogen coordination of the lanthanides only. Both compounds were investigated IR‐ and Raman‐spectroscopically and in regard to their thermal behaviour. They are the first examples of completely solvent‐free (coordinating and non‐coordinating) compounds of the lanthanides with a complete N‐coordination that were obtained via a solid‐state reaction method.  相似文献   

19.
Gehlenite, Ca2Al[AlSiO7], has melilite‐type structure with space group . It contains two topologically distinct positions coordinated tetrahedrally by oxygen. One is completely occupied by Al3+, whereas the other one contains Al3+ and Si4+. Normally, the Al3+ molar fraction in the second tetrahedrally coordinated position does not exceed xAl = 0.5, i.e. the so‐called Loewenstein‐rule is obeyed. In this contribution the structural variations in the melilite‐type compounds of the compositions LaxCa2?xAl[Al1+xSi1?xO7], EuxCa2?xAl[Al1+xSi1?xO7] and ErxCa2?xAl[Al1+xSi1?xO7] are discussed. All members of the solid solution except the end‐members violate Loewenstein's rule. Rietveld refinements against X‐ray powder diffraction patterns confirm that the compounds have space group , without changes in the Wyckoff‐positions of the ions compared to gehlenite.  相似文献   

20.
The reaction of YbCl3 with two equivalents of NaN‐(SiMe3)2 has afforded a mixture of several ytterbium bis(trimethylsilyl) amides with the known complexes [Yb{N(SiMe3)2}2(μ‐Cl)(thf)]2 ( 1 ) and [Yb{N(SiMe3)2}3]( 4 ) as the main products and the cluster compound [Yb3Cl4O{N(SiMe3)2}3(thf)3]( 2 ) as a minor product. Treatment of 1 and 2 with hot n‐heptane gave the basefree complex [Yb{N(SiMe3)2}2(μ‐Cl)]2 ( 3 ) in small yield. The structures of compounds 1—4 and the related peroxo complex [Yb2{N(SiMe3)2}4(μ‐O2)(thf)2]( 5 ) have been investigated by single crystal X‐ray diffraction. In the solid‐state, 3 shows chlorobridged dimers with terminal amido ligands (av. Yb—Cl = 262.3 pm, av. Yb—N = 214.4 pm). Additional agostic interactions are observed from the ytterbium atoms to four methyl carbon atoms of the bis(trimethylsilyl)amido groups (Yb···C = 284—320 pm). DFT calculations have been performed on suitable model systems ([Yb2(NH2)4(μ‐Cl)2(OMe2)2]( 1m ), [Yb2(NH2)4(μ‐Cl)2]( 3m ), [Yb‐(NH2)3]( 4m ), [Yb2(NH24(μ‐O2)(OMe2)2]( 5m ), [Yb{N‐(SiMe3)2}2Cl] ( 3m/2 ) and Ln(NH2)2NHSiMe3 (Ln = Yb ( 6m ), Y ( 7m )) in order to rationalize the different experimentally observed Yb—N distances, to support the assignment of the O—O stretching vibration (775 cm ‐1) in the Raman spectrum of complex 5 and to examine the nature of the agostic‐type interactions in σ‐donorfree 3 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号