首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of ECl3 (E = Al, Ga) with two equivalentsof Li2Me2Si(NPh)2 (in diethyl ether/n‐hexane) leads to the formation of bis‐chelate complexes [Li(OEt2)3][E{Me2Si(NPh)2}2] (E = Al ( 1 ), Ga ( 2 )). Compounds 1 and 2 crystallize isotypically in the monoclinic system with a = 1136.42(6), b = 3267.9(1), c = 1360.37(8) pm, β = 94.320(7)° for 1 and a = 1140.88(6), b = 3261.7(2), c = 1360.20(8) pm, β = 94.641(7)° for 2 . Both the compounds display a distorted tetrahedral coordination of the central metal atom to give a spirocyclic EN4Si2 core. The Al–N bond lengths are in the range of186.5–186.9 pm and for the Ga–N distances values between 192.3and 193.1 pm are observed. Treatment of InCl3 with three equivalents of Li2Me2Si(NPh)2 yields the tris‐chelate [{Li(OEt2)}3In{Me2Si(NPh2)}3] 3 . Compound 3 crystallizes in the trigonal crystal system , space group R$\bar{3}$ c with a = 1852.4(1), and c = 3300.2(2) pm. The central indium atom is coordinated by threeMe2Si(NPh)22– ligands in a distorted octahedral arrangement withIn–N bond lengths of 230.8 pm.  相似文献   

2.
The protection of the hydroxy group of 1‐hydroxy‐2.2.4.5.5‐pentamethyl‐3‐imidazoline by a t‐butyldimethylsilyl group gives the silane 1 which allows via the 4‐lithium salt the preparation of 4‐substituted derivatives, i. e. a dithiocarboxylic acid ( 2 ), a disulfide ( 3 ), a phosphane ( 4 ) and a thioether ( 5 ). Oxidation of 4‐lithiated 1 yields under C–C coupling an ethylene bridged bis(3‐imidazoline) ( 6 ). From these compounds Pd(II) and Pt(II) complexes M( 4 )2Cl2 (M = Pd, Pt and Pd( 5 )Cl2 were prepared and the structure of the dithiocarboxylate chelate complex Pd( 2 ‐H+)2 ( 7 ) was determined by X‐ray diffraction. Cleavage of the silyl group from 7 gives complex 8 which can be oxidized to the corresponding diradical ( 9 ). Complex 9 was characterized by its EPR spectrum. Measurements of the magnetic susceptibility of 9 reveal strong antiferromagnetic coupling between the two spins at low temperatures.  相似文献   

3.
Complex Fluorides of Palladium(II) – A Short Survey Fluorine and its compounds in some respects take over a certain exceptional position which is in many cases different from heavy homologous and respectively their compounds. On the one hand this applies to the different stability of comparable oxidation states (as far as they are accessible) and on the other hand it applies to the commonly observed compositions or structures of the particular compounds, as well. This concerns the compounds of the binary as well as those of the ternary and the even more complex systems. Besides its to a large extent ionic bond character (at least at lower oxidation states), the marginal size (F? is the smallest elementary charged anion) and sometimes its minor ligand field force plays an essential role by the constitution of ligands (coordination sphere), anyway by transition metal complexes. One of the most distinctive examples for this purpose are the PdII–fluorides, the following short survey deals with.  相似文献   

4.
A series of new 3‐(arylhydrazono)pentane‐2, 4‐diones ( 1 ‐ 6 ) synthesized from pentane‐2, 4‐dione and diazonium salts of respective anilines using the procedure of Japp‐Klingemann are described. Complexes with CuII and NiII salts are prepared ( 7 ‐ 10 , respectively). Spectroscopic properties of these compounds have been studied and X‐ray crystal structures of selected hydrazones ( 3 , 4 , 6 ) and of the hydrazone complexes ( 7 ‐ 10 ) are reported. The structures of the uncomplexed hydrazones feature an intramolecular N‐H···O interaction to yield a six‐membered H‐bond ring reflecting preference of the hydrazone tautomeric structure. All the complexes are mononuclear 2:1 (L:M) structures of six‐membered chelate type involving N2O2 binding sites that are quadratic arranged but differ in the entire coordination environment dependent on the metal and the ligand substitution including distorted octahedral and quadratic pyramidal coordination geometries in the CuII complexes 7 and 8 or nearly regular square planar coordination geometry in the NiII complexes 9 and 10 , respectively. In the crystal packings, strong and weak H‐bond interactions cause supramolecular network structures.  相似文献   

5.
Partially fluorinated 1,4‐Diazadiene (α‐Diimine) ligand 3,5‐CF3‐BIAN (1) formed from 3,5‐bis(trifluoromethyl)aniline and acenaphthenequinone was used in the synthesis of palladium dichlorido complex 2 and its mono methyl chlorido palladium complex 3 . Both complexes as well as side products of the reaction with methyl lithium such as trans‐bis(3,5‐bis(trifluoromethyl)aniline complex 4 and an interesting mixed valent trinuclear V‐shaped palladium cluster 5 with two bridging μ23‐N,CN′ non‐innocent BIAN ligands were structurally characterized by the single‐crystal XRD method.  相似文献   

6.
运用三足四齿配体三(2-甲基吡啶)胺(TPA)或三(2-甲基苯丙咪唑)胺(TBA),得到两个双核铁(III)配合物,[Fe2L22-O)(μ2-p-NH2-C6H4COO)]3+ (L = TPA, 1 和 L = TBA, 2)。两个配合物均为单斜晶系,空间群为P2(1)/c.晶胞参数 1: a = 1.4529(4), b = 1.6622(5), c = 2.0625(6) nm, β= 100.327(5)º, V = 4.900(3) nm3, z = 4, F(000) = 2344, 分子量Mr = 1142.91, Dc = 1.549 g/cm3, R1 = 0.0544, R2 = 0.0962. 2: a = 1.3378(4), b = 2.1174(7), c = 2.4351(7) nm, β= 97.315(6)º, V = 6.842(4) nm3, z = 4, F (000) = 3116, 分子量Mr = 1505.08, Dc = 1.444 g/cm3, R1 = 0.0793, R2 = 0.1623. 在两个双核铁(III)配合物中,中心的三价铁和配体TPA或TBA上的四个氮原子和两个氧原子通过不同的桥形成一个畸变的八面体构型。  相似文献   

7.
Several palladium(II) and platinum(II) complexes of tripropylarsanes (AsR3; R = Pr, iPr) with the formulae, [MCl2(AsR3)2], [M2Cl2(μ‐Cl)2(AsR3)2], [Pd2Me2(μ‐Cl)2(AsR3)2], [Pd2X2(μ‐Pz)2(AsR3)2] (X = Cl or Me, Pz = pyrazolate), [Pd2Cl2(μ‐Y)2(AsR3)2] (Y = OAc or SPh), [MCl(S2CNEt2)(AsR3)] and [PdCp(Cl)(AsiPr3)] (M = Pd or Pt) have been prepared. All the complexes have been characterised by elemental analyses, IR and 1H NMR spectroscopy. The stereochemistry of the complexes has been deduced from the spectroscopic data. The structures of [Pd2Me2(μ‐X)2(AsiPr3)2] (X = Cl or Pz) have been established by single crystal X‐ray diffraction analyses. Both of the complexes have sym‐trans configuration. Strong trans influence of the methyl group is reflected on the Pd—X bond distances.  相似文献   

8.
The reactions of platinum(II) iodide with triethyl‐ or trimethylsulfonium iodide in acetonitrile solution lead to the formation of crystalline products (Et3S)2[PtI6] ( 1 ) and [Me3S]2[PtI6]·CH3CN ( 2 ), respectively. The formation of Pt(IV) complexes may be explained either by disproportionation of PtI2 or oxidation by oxygen. Palladium(II) iodide reacts with triethylsulfonium iodide to give the palladium(II) complex (Et3S)2[PdI4] ( 3 ). The crystal structures of 1 – 3 were determined by single‐crystal X‐ray diffraction. In the crystal structures, the compounds 2 and 3 exhibit an extensive hydrogen‐bonding network.  相似文献   

9.
The reaction of cadmium salts with various amounts of the tridentate NS2‐chelating ligands 1‐(2‐mercapto‐acetophenone)‐4‐triphenylmethylthiosemicarbazone (H2L1) and 1‐(5‐mercapto‐3‐methyl‐1‐phenylpyrazole‐4‐carboxaldehyde)‐4‐triphenyl‐methylthiosemicarbazone (H2L2) in the presence of bases like N‐methylimidazole (N–MeIm), pyridine (py) or triethylamine (Et3N) provided a series of novel mono‐, di‐, tri‐ and heptanuclear cadmium complexes. They are of the general formulas [CdL1(N–MeIm)]2 ( 1 ), [CdL1(py)]2 ( 2 ), [CdL2(N–MeIm)]2 ( 3 ), [CdL2(py)3] · 0.25 C6H14 · 0.5 py ( 4 ), [Et3NH]2[Cd3L ] · 7 MeOH ( 5 ), [Et3NH]2[Cd3L ] ( 6 ) and [Et3NH]2[Cd7L ] · 14 MeOH ( 7 ). The compounds were characterized by elemental analysis, IR‐ and 1H‐NMR‐spectroscopy. Single‐crystal X‐ray structure analyses are reported for the complexes 2 , 4 , 5 and 7 . While 2 has a dimeric structure where each cadmium ion is pentacoordinated in a N2S3‐environment, 4 consists of a monomeric cadmium center with distorted octahedral N4S2‐coordination. The complexes 5 and 7 exhibit new structural types for tri‐ and heptanuclear cadmium compounds. It is shown that sulfur bridging might proceed via arylthiolates, iminothiolates or even both functions of the ligand. Aggregation is influenced by various factors like solvents, counterions and ligand properties.  相似文献   

10.
The reaction of [(Ph3P)2CuCl]2 with 4‐amino‐6‐methyl‐1,2,4‐triazine‐thione‐5‐one (AMTTO, 1 ) in methanol and further recrystallization from methanol/acetone solution gives [(C4H4N3SON(=CMe2)Cu(PPh3)2Cl] ( 2 ) as a neutral complex. [(C4H4N3SON(=CMe2)Ag(PPh3)2]NO3 ( 4 ) can be obtained in excellent yield by the reaction of [(AMTTO)2Ag]NO3 ( 3 ) with triphenylphosphane in methanol/acetone. Both complexes were characterized by infrared spectroscopy, elemental analyses as well as by X‐ray diffraction studies. Crystal data for 2 at –80 °C: space group P1 with a = 1233.8(1), b = 1389.7(1), c = 1417.1(1) pm, α = 89.36(1)°; β = 65.10(1)°, γ = 65.95(1)°, Z = 2, R1 = 0.0582 and for 4 at –80 °C: space group P1, with a = 1193.3(1), b = 1308.5(1), c = 1385.3(1) pm, α = 94.69(1)°, β = 109.14(1)°, γ = 93.42(1)°, Z = 2, R1 = 0.0716.  相似文献   

11.
Tri(1‐cyclohepta‐2, 4, 6‐trienyl)phosphane, P(C7H7)3 ([P] when coordinated to a metal atom), was used to stabilize complexes of platinum(II) and palladium(II) with chelating dichalcogenolato ligands as [P]M(E∩E) [E = S, ∩ = CH2CH2, M = Pt ( 3a ); E = S, ∩ = 1, 2‐C6H4, M = Pt ( 5a ), Pd ( 6a ); E = S, ∩ = C(O)C(O), M = Pt ( 7a ), Pd ( 8a ); E = S, Se, ∩ = 1, 2‐C2(B10H10), M = Pt ( 9a, 9b ), Pd ( 10a, 10b ); E = S, ∩ = Fe2(CO)6, M = Pt ( 11a ), Pd ( 12a )]. Starting materials in all reactions were [P]MCl2 with M = Pt ( 1 ) and Pd ( 2 ). Attempts at the synthesis of [P]M(ER)2 with non‐chelating chalcogenolato ligands were not successful. All new complexes were characterized by multinuclear magnetic resonance spectroscopy in solution (1H, 13C, 31P, 77Se and 195Pt NMR), and the molecular structures of 5a and 12a were determined by X‐ray analysis. Both in the solid state and in solution the ligand [P] is linked to the metal atom by the P‐M bond and by η2‐C=C coordination of the central C=C bond of one of the C7H7 rings. In solution, intramolecular exchange between coordinated and non‐coordinated C7H7 rings is observed, the exchange process being markedly faster in the case of M = Pd than for M = Pt.  相似文献   

12.
Three new gallium complexes formulated as [Ga(PDA)2][Ga(H2O)(PDA)(phen)]·4H2O(1), [Ga(PDA)2]· (H2IN)·2H2O(2) and [Ga(OH)(PDA)(H2O)]2(3)(H2PDA=pyridine-2,6-dicarboxylic acid; phen=1,10-phenanthroline; HIN=isonicotinic acid) have been synthesized under hydrothermal conditions. In the mixed-ligand system of complex 1, PDA2? and phen are connected to the central Ga3+ cation as tri- and bi-dentate ligands, respectively. In complex 2, each Ga3+ cation is six-coordinated by two PDA2? anions octahedrally. Complex 3 shows a binuclear structure, with the bond distance of Ga1-Ga2 being 0.30061(3) nm. The 3D supramolecular structures of the three complexes are constructed via hydrogen bonds and aromatic π-π packing interactions. All the three complexes exhibit intense blue emission at room temperature in the solid state, which are attributed to π*-π transition centered on the ligands.  相似文献   

13.
The reactions of pyrimidine‐phosphine ligand N‐[(diphenylphosphino)methyl]‐2‐pyrimidinamine ( L ) with various metal salts of PtII, PdII and CuI provide three new halide metal complexes, Pt2Cl4(μ‐L)2·2CH2Cl2 ( 1 ), Pd2Cl4(μ‐L)2 ( 2 ), and [Cu2(μ‐I)2L2]n ( 3 ). Single crystal X‐ray diffraction studies show that complexes 1 and 2 display a similar bimetallic twelve‐membered ring structure, while complex 3 consists of one‐dimensional polymeric chains, which are further connected into a 2‐D supramolecular framework through hydrogen bonds. In the binuclear complexes 1 and 2 , the ligand L serves as a bridge with the N and P as coordination atoms, but in the polymeric complex 3 , both bridging and chelating modes are adopted by the ligand. The spectroscopic properties of complexes 1 ‐ 3 as well as L have been investigated, in which complex 3 exhibits intense photoluminescence originating from intraligand charge transfer (ILCT) π→π* and metal‐to‐ligand charge‐transfer (MLCT) excited states both in acetonitrile solution and solid state, respectively.  相似文献   

14.
Several new two‐ligand complexes of zinc(II) with the aromatic N, N‐donor ligands 2, 2′‐bipyridine or 1, 10‐phenanthroline and one of three different α‐hydroxycarboxylates (HL′) derived of the α‐hydroxycarboxylic acids (H2L′) (2‐methyllactic, H2mL; mandelic, H2M or benzilic, H2B) were prepared. The compounds of formula [Zn(HL′)2(NN)]·nH2O (HL′ = HM, HB) were isolated as white powders and characterized by elemental analysis, IR spectroscopy and thermogravimetric analysis. The complexes of general formula [Zn(HL′)(NN)2](HL′)·nH2O (HL′ = HmL, HM) and [Zn(HB)2(NN)2], were obtained as single crystals and were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and X‐ray diffractometry. In all cases, the zinc atom is in a distorted octahedral environment. In [Zn(HL′)(NN)2](HL′)·nH2O the α‐hydroxycarboxylato ligands behave as bidentate chelating monoanion and an α‐hydroxycarboxylate as counterion is also present. In [Zn(HB)2(NN)2], the monoanionic benzilato ligand behaves as monodentate through one oxygen atom of the carboxylate function. The effect of the classical and no‐classical hydrogen bonding and of the π‐π and C‐H…π interactions in the 3D supramolecular arrangement of these molecular complexes is analyzed.  相似文献   

15.
Heteroleptic nickel(II) complexes [NiL2L′] of a series of monoanionic and potentially bidentate N‐2‐pyridyl‐sulfonamide ligands [HL] and 2,2′‐bipyridine or 1,10‐Phenanthroline (L′) have been prepared by electrochemical oxidation of a nickel anode in an acetonitrile solution of the ligands. The complexes have been characterized by microanalysis, IR and electronic spectroscopy, magnetic measurements and LSI mass spectrometry. The crystal structure of [Ni(Ms6mepy)2(bipy)] has been determined by x‐ray diffraction and shows the metal in an octahedral NiN6 environment. Octahedral structures are also proposed for the other complexes with the N‐2‐pyridyl‐sulfonamide ligands acting as N,N′ or N, O bidentate systems, depending on the position of the methyl substituent on the pyridine ring.  相似文献   

16.
Palladium(II) bromide reacts with gallium(III) bromide in the presence of arenes yielding binuclear palladium(I) complexes [Pd2(GaBr4)2(arene)2], where arene=benzene (1), toluene (2) and p-xylene (3). Reaction of palladium(II) chloride with gallium(III) chloride in p-xylene leads to the analogous palladium(I) compound [Pd2(GaCl4)2(p-xylene)2] (4); the X-ray structures of 1-4 were determined.  相似文献   

17.
Reaction of PdCl2(CH3CN)2 with the sodium salt of 5‐mercapto‐1‐methyltetrazole (MetzSNa) in methanol solution affords an interesting dinuclear palladium complex [Pd2(MetzS)4 ] ( 1 ). However, treatment of PdCl2(CH3CN)2 with neutral MetzSH ligand in methanol solution produces a mononuclear palladium complex [Pd(MetzSH)4]Cl2 ( 2 ). Both complexes were characterized by IR, 1HNMR, UV‐Vis spectroscopy as well as X‐ray crystallography. Single‐crystal X‐ray diffraction analyses of two complexes lead to the elucidation of the structures and show that 1 possesses an asymmetric structure: one Pd atom is tetracoordinated by three sulfur atoms and one nitrogen atom to form PdS3N coordination sphere, the other Pd atom is tetracoordinated by three nitrogen atoms and one sulfur atom to form PdSN3 coordination sphere. The molecules of 1 are associated to 1‐D infinite linear chain by weak intermolecular Pd···S contacts in the crystal lattice. In 2 , the Pd atom lies on an inversion center and has a square‐planar coordination involving the S atoms from four MetzSH ligands. The two chloride ions are not involved in coordination, but are engaged in hydrogen bonding.  相似文献   

18.
[PdCl(TeMe2)3]BArF ( 4 ) forms as the major tellurium containing product from the reaction of [(4‐Mebti)PdCl] with TeMe2 and Na(BArF) and is isolated by crystallization from the reaction mixture. At ?20 °C, the compound forms orange columns from toluene/pentane, space group , with Z = 2. In the solid, the cationic [PdCl(TeMe2)3]+ complex ions show a non‐planar PdClTe3 coordination unit and are associated to dimers via weak Pd···Te interactions.  相似文献   

19.
The difurylphosphido-bridged dinuclear complex [Ru2(CO)6(μ-PFu2)(μ-η12-Fu)] (Fu = 2-furyl) 1 readily reacts with two equivalents of each of the terminal alkynes HC≡CR (R = Fc, p-C6H4Fc, p-C6H4NO2, Fc = Fe(η5-C5H5)(η5-C5H4)) by an interesting head-to-tail ynyl coupling with a furan group to form a series of phosphido-bridged diruthenium compounds containing a novel furyl-substituted C4 hydrocarbyl chain of stoichiometry [Ru2(CO)4(μ-PFu2){μ-η1123-RCC(H)C(R)C(H)Fu}] (R = Fc 2, p-C6H4Fc 3, p-C6H4NO2 4) in moderate to good yields. Reaction of 1 with an equimolar amount of HC≡CFc and HC≡C(p-C6H4NO2) afforded a pair of isomers of [Ru2(CO)4(μ-PFu2){μ-η1123-R1CC(H)C(R2)C(H)Fu}] (R1 = Fc, R2 = p-C6H4NO2 5a; R1 = p-C6H4NO2, R2 = Fc 5b) together with a small mixture of 4. X-ray crystal structures of 2, 3, 5a and 5b are reported. All of these new alkyne-derived dinuclear complexes are electron precise with 34 cluster valence electrons in which the μ-η12-furyl ligand acts as a three-electron donor and the μ-phosphido Ru2 framework is retained in the products upon alkyne coupling reactions. The resulting organic fragment of each complex is coordinated to the Ru atoms via a π, a π-allyl and two σ bonds, and donates seven electrons to the metal core. Dedicated to the memory of Professor F. Albert Cotton.  相似文献   

20.
Two new metal complexes [Zn( L1 )]n ( 1 ) and [Cd3( L2 )2Cl2(H2O)6]n ( 2 ) (H2 L1 = 1,5‐bis(tetrazol‐5‐yl)‐3‐oxapentane, H2 L2 = bis(tetrazol‐5‐yl)methane) have been synthesized and characterized by elemental analysis, IR spectroscopy and single‐crystal X‐ray diffraction analysis. Complex 1 was a 2‐D sheet constructed by L1 and Zn(II) center, further assembled to form a three‐dimensional (3‐D) supramolecular networks through weak hydrogen‐bonding interactions. In the complex 2 , there were two unequivalent Cd(II) centers, and some of ligands L2 adopted chelate coordination mode, and others adopted bridge coordination mode linking the Cd1 center and simultaneously bridging the Cd2 center, the Cl anions adopted μ2 bridging mode, ligands L2 and the Cl anions linked the Cd(II) centers to form a 3‐D supramolecular networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号