首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Zintl-Compounds with Gold: M3AuSn4 with M = K, Rb, Cs and M3AuPb4 with M = Rb, Cs Silver coloured, brittle single crystals of the compounds M3AuSn4 with M = K, Rb, Cs and M3AuPb4 with M = Rb, Cs were synthesized by reactions of alkali metal azides (MN3) with gold sponge and tin (lead) powder at T = 923 K. The structures of the isotypic compounds (space group Pmmn, Z = 2) were determined from X-ray single-crystal diffractometry data (see ‘‘Inhaltsübersicht”︁”︁). The Zintl-compounds M3AuE(14)4 with E(14) = Sn, Pb contain [AuE(14)4]-chains with P4-analogous E(14)4-tetrahedra which are connected by μ2-bridging gold atoms.  相似文献   

2.
Synthesis and Crystal Structure of the known Zintl Phases Cs3Sb7 and Cs4Sb2 Cs3Sb7 and Cs4Sb2 were synthesized from the elements and their crystal structures were determined on the basis of single crystal x‐ray data. Cs3Sb7 crystallizes in the monoclinic system with space group P21/c (a = 1605.7(1) pm, b = 1571.1(1) pm, c = 2793.9(2) pm, β = 96.300(2)°, Z = 16) and contains anions Sb73–. In the structure of Cs4Sb2 (orthorhombic, space group Pnma, a = 1598.5(3) pm, b = 631.9(2) pm, c = 1099.5(2) pm, Z = 4) dumbbells Sb24– are present.  相似文献   

3.
Cs5Sb8 and β‐CsSb: Two New Binary Zintl Phases The anion in the crystal structure of the new Zintl phase Cs5Sb8 synthesized from the elements (monoclinic, space group P21/c, a = 724.4(2) pm, b = 1135.2(3) pm, c = 2750.9(8) pm, β = 96.663(5)°, Z = 4) consists of two and three bonded Sb atoms, which are connected to form puckered nets with 5 and 28 membered rings. β‐CsSb (monoclinic, space group P21/c, a = 1519.4(3) pm, b = 734.0(2) pm, c = 1432.2(2) pm, β = 113.661(3)°, Z = 4) crystallizes with a superstructure of the LiAs structure type. As in the α phase (NaP type), twobonded Sb atoms form neary ideal 41 screx chains. In contrast to the α phase the helices have opposite chirality.  相似文献   

4.
5.
Compounds in the Systems Potassium(Rubidium)/Gold/Antimony: K3Au3Sb2, Rb3Au3Sb2, and K1,74Rb0,26RbAu3Sb2 Brittle, silver coloured single crystals of K3Au3Sb2, Rb3Au3Sb2 and K1,74Rb0,26RbAu3Sb2 were obtainded by reaction of the alkali metal azides (KN3, RbN3) with gold and antimon powder at 550°C. The structures of the isotypic compounds (R3 m, Z = 3) were determined by X-ray single-crystal diffractometer data: K3Au3Sb2, a = 6,198(2) Å, c = 21,520(5) Å, R/Rw (w = 1) = 0,046/0,058, Z(F) ? 3σ(F) = 175, Z(Var.) = 14; Rb3Au3Sb2, a = 6,443(3), c = 21,69(2), R/Rw (w = 1) = 0,059/0,082, Z(F) ? 3σ(F02) = 258, Z(Var.) = 14; K1,74Rb0,26RbAu3Sb2, a = 6,288(2) Å, c = 21,617(5) Å, R/Rw (w = 1) = 0,049/0,069, Z(F) ? 3σ(F) = 390, Z(Var) = 14. The compounds crystallize with the K3Cu3P2-structure type. The Au? Sb partial structures consist of [AuSb2/3] layers with linear Sb? Au? Sb dumb-bells and SbAu3 pyramids. The layers are separated by two crystallographically independent alkali metal atoms along [001].  相似文献   

6.
Gold-rich Aurides with Caesium: Cs1.34Rb0.66RbAu7 and Cs1.60Rb0.40RbAu7 Cs1,60Rb0,40RbAu7, Raumgruppe Cmmm, Z = 2, a = 5,677(1) Å, b = 13,273(3) Å, c = 7,288(1) Å, R1/wR2 = 0,0392/0,0892, Z(F) ≥ 2σ(F) = 700 and Z(Var.) = 23. Silver coloured, brittle single crystals of Cs1.34Rb0.66RbAu7 and Cs1.60Rb0.40RbAu7 were obtained by the reaction of CsN3, RbN3 and gold sponge at 903 K. The structures were determined from X-ray single-crystal diffractometry data: Cs1.34Rb0.66RbAu7, space group Cmmm, Z = 2, a = 5.657(1) Å, b = 13.265(4) Å, c = 7.281(2) Å, R1/wR2 = 0.0373/0,0628, N(F) ≥ 2σ(F) = 818 and N(var.) = 23.  相似文献   

7.
Deep‐red moisture and air sensitive single crystals of K4Ge9 were obtained by reacting GeO2 and elemental Ge with metallic W and K at high temperature in a niobium ampoule. The crystal structure of the compound was determined by single crystal X‐ray diffraction experiments. K4Ge9 crystallizes in a polar space group R3c (No. 161), Z = 4 with a = 21.208(1) and c = 25.096(2) Å. The compound contains discrete Ge94? Wade's nido‐clusters which are packed according to a hierarchical atom‐to‐cluster replacement of the Cr3Si prototype and are separated by K+ cations. Two independent [Ge9]4? clusters A (at Cr positions) and B (at Si positions) are found with a ratio A:B = 3:1. The B ‐type cluster satisfactorily represents orientational disorder around the three‐fold axis.  相似文献   

8.
RbSb2 – A Zintl Phase related to KSb2 The electron‐precise Zintl compound RbSb2, which was known to melt incongruently at 418 °C, has been prepared in pure phase from elemental rubidium and antimony in sealed tantalum crucibles. In accordance with the ribbon‐shaped antimonide anions, the compound crystallizes with extremely thin intergrown, mechanically and chemically very sensitive needles of dark‐metallic lustre. The crystal structure could be determined and refined using single crystal x‐ray data (monoclinic, space group C2/m, a = 1403(2), b = 414.0(4), c = 855.7(14) pm, β = 104.45(12)°, Z = 4, R1 = 0.0901) despite the poor quality of the crystals. It shows fused six‐membered rings of two‐ and three‐bonded Sb atoms forming ribbons running along the monoclinic b axis, which can be interpreted as sections of the elemental structure of antimony (dSb‐Sb = 281.9(5) and 286.0(9) pm respectively). The structure of RbSb2 is thus closely related to that of KSb2, which exhibits identical antimony anions. Compared to the potassium compound, the ribbons are reoriented against each so that the coordination number of the A counter ions is increased from 6 + 2 (for A = K) to 8 + 2 (for A = Rb). The results of a FP‐LAPW band structure calculation of RbSb2 are used to explain the chemical bonding in this classical Zintl phase with a calculated indirect band gap of 0.38 eV.  相似文献   

9.
The possibility to synthesize and isolate different types of bismuth polyanions by dissolving various intermetallic precursors (binary samples from A‐Bi or ternary samples from A‐A'‐Bi systems, A and A' = K, Rb, Cs) in ethylenediamine or dimethylform amide in the presence of sequestering agents (2, 2, 2‐crypt or 18‐crown‐6) was investigated. The crystals of (2, 2, 2‐crypt‐K)2Bi4 ( 1 ) and (2, 2, 2‐crypt‐Rb)2Bi4 ( 2 ) compound were obtained from such solutions, the latter for the first time, and their structures were determined. The two compounds are isostructural (P1, Z=1, a = 11.052(2) Å, b = 11.370(2) Å, c = 11.698(2) Å, α = 61.85(3) °, β = 82.58(3) °, γ = 81.87(3) °, R1 = 0.058, wR2 = 0.149 for 1 and a = 11.181(2) Å, b = 11.603(2) Å, c = 11.740(2) Å, α = 61.96(3) °, β = 81.45(3) °, γ = 82.26(3) °, R1 = 0.041, wR2 = 0.109) and contain Bi42— square planar cluster anions and cryptated alkali metal cations. In the case of the presence of 18‐crown‐6 the Laves phases ABi2 (A = K, Rb, Cs) could be isolated from the solutions. A mechanism for the formation of ABi2 is proposed.  相似文献   

10.
New Sr Compounds with Planar Al‐Si/Ge Anions and a Correction of SrSi‐II and SrGe0.76 Planar anions with considerable pπpπ interactions between heavier group 13 and 14 elements are observed in several alkaline earth trielides and tetrelides. In the intermetallics of the series SrAlxGe2?x (border phases: x = 1: , a = 429.4(3), c = 474.4(3) pm, Z = 1, R1 = 0.0305, SrPtSb type and x = 1.6: P6/mmm, a = 440.4(2), c = 478.2(2) pm, Z = 1, R1 = 0.0125, AlB2 type) graphite analogue planar Al/Ge nets with short Al‐Ge bonds are stacked in identical orientation, showing inter‐layer distances of approx. 475 pm. Starting from the related planar ribbons of condensed six‐membered rings in the known intermetallics (MIV = Si, Ge) a series of new metal‐rich oxides with chain pieces consisting of three, two and finally only one six‐membered ring have been prepared and characterized on the basis of single crystal X‐ray data. The formal fragmentation of the ribbons is achieved by the incorporation of [OSr6] octahedra, chains of which (connected via common corners) exactly fit the distance between the planar anions. The structures of the two compounds (MIV = Si, Ge; formerly erroneously reported as SrSi and SrGe0.76, space group Immm, a = 482.48(5)/484.55(8), b = 1306.5(2)/1342.2(2), c = 1814.0(2)/1857.4(3) pm, Z = 2, R1 = 0.0369/0.0316) contain isolated planar anions [M2Al2M2Al2M2]18? with only one six‐membered ring. In the monoclinic structures of the silicide Sr13[Al6Si8][O] (C2/m, a = 2245.1(4), b = 482.76(5), c = 1720.6(5) pm, β=125.21(2)°, Z = 2, R1 = 0.0579) and the germanide Sr16[Al8Ge10][O] (C2/m, a = 2287.23(14), b = 484.94(3), c = 2065.70(13) pm, β=120.150(4)°, Z = 2, R1 = 0.0730) anions [Si2Al2Si2Al2Si2Al2Si2] and [Ge2M2Ge2M2Ge2M2Ge2M2Ge2] with two and three six‐membered rings are left as fragments of the ribbons in Sr3Al2M2. The puzzling bonding situation in these type of polar intermetallics at the Zintl border is calculated (using the DFT FP‐LAPW approach) for the structures with manageably small unit cells and discussed for the series SrAlM – Sr3Al2M2 – Sr16[Al8M10][O] – Sr13[Al6M8][O] – Sr10[Al4M6][O].  相似文献   

11.
Carbonate Hydrates of the Heavy Alkali Metals: Preparation and Structure of Rb2CO3 · 1.5 H2O und Cs2CO3 · 3 H2O Rb2CO3 · 1.5 H2O and Cs2CO3 · 3 H2O were prepared from aqueous solution and by means of the reaction of dialkylcarbonates with RbOH and CsOH resp. in hydrous alcoholes. Based on four‐circle diffractometer data, the crystal structures were determined (Rb2CO3 · 1.5 H2O: C2/c (no. 15), Z = 8, a = 1237.7(2) pm, b = 1385.94(7) pm, c = 747.7(4) pm, β = 120.133(8)°, VEZ = 1109.3(6) · 106 pm3; Cs2CO3 · 3 H2O: P2/c (no. 13), Z = 2, a = 654.5(2) pm, b = 679.06(6) pm, c = 886.4(2) pm, β = 90.708(14)°, VEZ = 393.9(2) · 106 pm3). Rb2CO3 · 1.5 H2O is isostructural with K2CO3 · 1.5 H2O. In case of Cs2CO3 · 3 H2O no comparable structure is known. Both structures show [(CO32–)(H2O)]‐chains, being connected via additional H2O forming columns (Rb2CO3 · 1.5 H2O) and layers (Cs2CO3 · 3 H2O), respectively.  相似文献   

12.
NaAuGe, a Further Ternary Auride with Ethane Analogous Ge2Au6 Building Units Black, brittle single crystals of NaAuGe were obtained by the reaction of NaN3, gold sponge and germanium at 800°C. The structure was determined from X-ray single-crystal diffractometry data: space group Imm2, Z = 4, a = 4.422(1) Å, b = 7.238(2) Å, c = 7.531(2) Å, R1/wR2 = 0.0195/0.0482, N(F) ≥ 2σ(F) = 811 and N(var.) = 21. NaAuGe crystallizes in a new ternary variant of the KHg2 (CeCu2)structure type. Gold and germanium form puckered [AuGe3/3] layers with trigonal planar coordinated gold. The [AuGe3/3] nets are connected to a framework structure via Ge—Ge contacts along [010] which consist of ethane analogous Ge2Au6 building units. The sodium atoms are placed in channels of the Au—Ge framework structure which run along [100] and [010].  相似文献   

13.
Alkali Metal Bismuthides ABi and ABi2 — Synthesis, Crystal Structure, Properties The Zintl phases ABi (A = K/Rb/Cs; monoclinic, space group, P21/c, a = 1422.3(2)/1474.2(2)/1523.7(3), b = 724.8(1)/750.2(1)/773.7(1), c = 1342.0(2)/1392.1(2)/1439.9(2) pm and β = 113.030(3)/113.033(2)/112.722(3)°, Z = 16) crystallize with the β‐CsSb structure type containing chains of two‐connected Bi atoms. Hence, and according to calculated electronic structures, they are semiconductors with small band gaps of approx. 0.5 eV. In contrast, the compounds ABi2 (A = K/Rb/Cs; cubic, space group Fd3¯m, a = 952.1(2)/962.4(8)/972.0(3) pm, Z = 8) belong to the Laves phases, showing a typical metallic electrical conductivity and no band gaps.  相似文献   

14.
Single Crystal Investigations on Fluoroperovskites MPdF3 (M = Rb, K) and PdF2 Single crystal investigations on PdF2 (violet) confirm the tetragonale rutile structure [1, 2] with a = 495.44(3) pm, c = 338.48(3) pm, Z = 2, space group P42/mnm-D (No. 136) (xF = 0.3058(8)). RbPdF3 and KPdF3 have been obtained. RbPdF3 and KPdF3 both ruby-red single crystals crystallize cubic (perovskite-structure), space group Pm3m-O (No. 221) with a = 429.41(8) pm (RbPdF3) respectively a = 424.30(4) pm (KPdF3).  相似文献   

15.
The compound [Rb(18‐crown‐6)]2Rb2[Sn9](en)1.5 ( 1 ) was synthesized from an alloy of formal composition K2Rb2Sn9 by dissolving in ethylenediamine (en) followed by the addition of 18‐crown‐6 and toluene. 1 crystallizes in the monoclinic space group P21/n with a = 10.557(2), b = 25.837(5), c = 20.855(4)Å, β = 102.39°, and Z = 4. The structure consists of [Sn9]4— cluster anions, which are connected via Rb atoms to infinite [Rb4Sn9] layers. The layers of binary composition are separated by the crown ether molecules. The crown ether molecules are bound by one side via the Rb atoms to the [Sn9]4— anions. The other side, which is turned away from the Rb atoms, shows only weak van der Waals interactions to the crown ether molecules of the next layer. Comparison with other compounds of similar composition shows, that the variation of the alkali metals and the complexing organic molecules leads to the low dimensional arrangement of the clusters.  相似文献   

16.
Ternary Chlorides in the Systems ACl/DyCl3 (A = Cs, Rb, K) The phase diagrams of the pseudobinary systems ACl/DyCl3 (A = Cs, Rb, K) were investigated by DTA. With all alkali metals compounds A3DyCl6 (elpasolite family) and Ady2Cl7 are formed. Compounds A2DyCl5 exist only with Cs (Cs2DyCl5-type) and K (K2PrCl5-type). By solution calorimetry the formation enthalpies of the ternary chlorides from (nACl + DyCl3) were measured and ‘synproportionation enthalpies’ for the formation from the compounds, adjacent in the phase diagrams, calculated. K3DyCl6 is the only compound, which is formed with a loss in lattice enthalpy. E.m.f. measurements in dependence on the temperature have revealed that, as for the other compounds A3DyCl6, a remarkable gain in entropy exists, which stabilizes K3DyCl6 at T ≧ 312 K. This entropy gain correlates with the existence of isolated DyCl63? octahedra.  相似文献   

17.
Rb4O6 and Cs4O6 represent open shell p electron systems, featuring charge, spin, orbital and structural degrees of freedom, which makes them unique candidates for studying the ordering processes related, otherwise exclusively encountered in transition metal based materials. Probing the physical responses has been restrained by the intricacy of synthesizing appropriate amounts of phase pure samples. Tracing the thermal decomposition of respective superoxides has revealed that at least the rubidium and cesium sesquioxides exist in thermodynamic equilibrium, appropriate p‐T conditions given. These insights have paved the way to highly efficient and convenient access to Rb4O6 and Cs4O6.  相似文献   

18.
Starting from the Zintl-Concept: Syntheses and Crystal Structures of K2Ba3Sb4 and KBa4Sb3O The black, metallic lustrous, air sensitive compounds K2Ba3Sb4 and KBa4Sb3O were prepared from melts of mixtures of the elements, in case of KBa4Sb3O with a stoichiometric amount of Sb2O3. K2Ba3Sb4 crystallizes in the orthorhombic system, space group Pnma (a = 870.5(1) pm, b = 1770.2(2) pm, c = 923.6(1) pm, Z = 4) and is the first Sb compound with only [Sb2]4– dumbbells in the anionic partial structure. The compound KBa4Sb3O crystallizes in the tetragonal system, space group I4/mcm (a = 882.4(1) pm, c = 1659.4(2) pm, Z = 4). In this structure antimony forms [Sb2]4–-dumbbells and isolated ions Sb3–. Each antimony ion of the dumbbells – in K2Ba3Sb4 as well as in KBa4Sb3O – is coordinated in form of a bicapped skew trigonal prism. The isolated Sb3– ions in KBa4Sb3O center bicapped tetragonal antiprisms, the O2– ions occupy tetrahedral voids.  相似文献   

19.
Ternary Alkali Metal Transition Metal Acetylides A2MC2 with A = Rb, Cs, and M = Pd, Pt By the reaction of Rb2C2 and Cs2C2 with palladium or platinum powder in sealed glass ampoules at 653 K ternary acetylides A2MC2 (A = Rb, Cs; M = Pd, Pt) were obtained. Their crystal structures were solved and refined by means of X‐ray powder investigations (Na2PdC2 structure type, P 3 m1, Z = 1). The crystal structures are characterised by [M(C2)2/22–] chains separated by the alkali metals. Raman spectroscopic investigations revealed wave numbers of the C–C stretching vibrations between 1833 and 1842 cm–1, which are in good agreement with the results of the analogous sodium and potassium compounds.  相似文献   

20.
Carbonate Isostructural Anions [SnX3]5? in the Compounds Rb6[SnX3]O0.5 and Cs6[SnX3]O0.5 with X = As, Sb, and Bi The metallic shining compounds Rb6[SnX3]O0.5 and Cs6[SnX3]O0.5 with X = As, Sb, and Bi were prepared from the melt starting from adequate mixtures of the elements and SnO2. They crystallize in the hexagonal system (space group P63/mmc, No. 194, Z = 2) with the lattice constants mentioned in ?Inhaltsübersicht”?. In the structures of the isotypic compounds tin and the main group(V) elements build up trigonal planar anions [SnX3]5? with X = As, Sb, and Bi isostructural to the carbonate anion, oxygen forms isolated O2? ions. The bond lengths Sn? X are significantly shortened with respect to the sums of Pauling covalent radii. The atoms of the units [SnX3]5? are coordinated by alkali metal cations forming trigonal prisms and the O2? anions occupy octahedral holes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号