首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Novel Silver‐Telluride Clusters Stabilised with Bidentate Phosphine Ligands: Synthesis and Structure of {[Ag5(TePh)6(Ph2P(CH2)2PPh3)](Ph2P(CH2)2PPh2)}, [Ag18Te(TePh)15(Ph2P(CH2)3PPh2)3Cl], and [Ag38Te13(Te t Bu)12(Ph2P(CH2)2PPh2)3] Bidentate phosphine ligands have been found effective to stabilise polynuclear cores containing silver and chalcogenide ligands. They can act as intra and intermolecular bridges between the silver centres. The clusters {[Ag5(TePh)6(Ph2P(CH2)2PPh3)](Ph2P(CH2)2PPh2)} ( 1 ), [Ag18Te(TePh)15(Ph2P(CH2)3PPh2)3Cl] ( 2 ), and [Ag38Te13(TetBu)12(Ph2P(CH2)2PPh2)3] ( 3 ) have been prepared and their molecular structure determined. Compound 2 and 3 are molecular structures with separated cluster cores while 1 forms a polymeric chain bridged by phosphine ligands. ( 1 : space group P21/c (No. 14), Z = 4, a = 3518,1(7) pm, b = 2260,6(5) pm, c = 3522,1(7) pm, β = 119,19(3)°; 2 : space group R3 (No. 148), Z = 6, a = b = 3059,4(4) pm, c = 5278,8(9) pm; 3: space group Pccn (No. 56), Z = 4, a = 3613,0(9) pm, b = 3608,6(7) pm, c = 2153,5(8) pm)  相似文献   

2.
Preparation, Crystal Structure, and Spectroscopic Characterization of [(H3C)3Si]NH(BCl2) [(H3C)3Si]NH(BCl2) is formed during the reaction of boron trichloride with hexamethyldisilazane at low temperatures. The compound crystallizes monoclinic in space group P21/c with a = 953.8(2) pm, b = 1059.9(1) pm, c = 867.4(1) pm, β = 99.40(2)°; Z = 4. According to the single crystal X-ray diffraction analysis (1275 symmetry independent reflections, R = 0.040), [(H3C)3Si]NH(BCl2) exists as a dimer, in the crystal. The dimers have site symmetry Ci and, within the margins of error of the structure determination, point symmetry C2h. A characteristic feature is a planar, almost square B–N–B–N four-membered ring with the trimethylsilyl groups in trans position. The compound has been characterised by MS-, 1H-, 13C-, 11B-, and 29Si-NMR-spectroscopy.  相似文献   

3.
Phosphoraneiminato Complexes of Boron. Syntheses and Crystal Structures of [BBr2(NPMe3)]2, [B2Br3(NPiPr3)2]Br, [B2(NPEt3)4]Br2, [B2Br2(NPPh3)3]BBr4 and [{B2(NMe2)2}2(NPEt3)2]Cl The bromoderivatives of the title compounds are prepared from the corresponding silylated phosphoraneimines Me3SiNPR3 and boron tribromide. The boron subcompound [{B2(NMe2)2}2(NPEt3)2]Cl2 derives from Me3SiNPEt3 and B2Cl2(NMe2)2. All complexes are characterized by NMR and IR spectroscopy as well as by crystal structure determinations. [BBr2(NPMe3)]2 (1): Space group P21/n, Z = 2, R = 0.031. Lattice dimensions at ?50°C: a = 723.8, b = 894.2, c = 1305.4 pm, β = 92.35°. 1 forms centrosymmetric molecules in which the boron atoms are linked via μ2-N bridges of the NPMe3? groups of from B2N2 four-membered rings with B? N distances of 149.9 and 150.9 pm. B2Br3(NPiPr3)2]Br (2): Space group P21, Z = 2, R = 0.059. Lattice dimensions at ?80°C: a = 817.6, b = 2198.7, c = 851.5 pm, β = 115.09°. In the cations of 2 the boron atoms are lined via the μ2-N atoms of the NPiPr3? groups to form planar, asymmetric B2N2 four-membered rings with B? N distances of 143 and 156 pm. [B2(NPEt3)4[Br2·4CH2Cl2 (3): Space group C2/c, Z = 4, R = 0.042. Lattice dimensions at ?50°C: a = 1946.1, b = 1180.3, c = 2311.3 pm, β = 101.02°. The structure contains centrosymmetric dications in which both the boron atoms are lined by the N atoms of two of the NPEt3? groups to form a B2N2 four-membered ring with B? N distances of 149.6 pm. The remaining two NPEt3? groups are terminally bonded with very short B? N distances of 133.5 pm. B2Br2(NPPh3)3]BBr4 (4): Space group P1 , Z = 2, R = 0.065. Lattice dimension at ?50°C: a = 1025.7, b = 1496.1, c = 1807.0 pm, α = 85.09°, β = 82.90°, γ = 82.72°. In the cation the boron atoms are lined via the μ2-N atoms of two of the NPPh3? groups to form a nearly planer B2N2 four-membered ring with B? N distances of 149.3-153.1 pm. The third NPPh33 group is terminally connected with teh sp2 hybridized boron atom and with a B? N distance of 134.1 pm along with an almost linear BNP bond angle of 173.6°. [{B2(NMe2)2}2(NPEt2)2]Cl2 · 3CH2Cl2 (5): Space group C2/c, Z = 4, R = 0.098. Lattice dimensions at ?70°C: a = 1557.9, b = 1294.7, c = 2122.9 pm, β = 96.08°. The structure of 4 contains centrosymmetric dications in which two by two B-B dumb-bells are linked via the μ2-N atoms of the two NEPt3? groups to form B4N2 six-membered rings with B? N distances of 150 and 156 pm and B-B distances of 173 pm. The B? N distances of the terminally bonded NMe2? groups correspond to 138 pm double bonds.  相似文献   

4.
A hydrothermal reaction of a mixture of ZnO, HCl, ethylenediphosphonic acid, ethylenediamine, acetic acid in a water, THF mixture gave rise to a new three‐dimensional zinc ethylenediphosphonate, [NH3(CH2)2NH3][Zn3{O3P(CH2)2}4], I . The structure, determined by single crystal X‐ray diffraction, (monoclinic, space group = C2/c, a = 16.9948(14), b = 6.7383(6), c = 16.8886(14)Å, β = 1113.568(1)°, V = 1772.7(3)Å3, Z = 4, R1 = 0.0227, wR2 = 0.0601), consists of a network of strictly alternating ZnO4 and PO3C tetrahedral units linked through their vertices forming the three‐dimensional structure. The amine molecules occupy the middle of the 8‐membered channels and interact with the framework through the hydrogen bonds. Unlike other zinc diphosphonates, I appear to have close similarity to zinc phosphate structures reported in the literature. To our knowledge, this is the first three‐dimensional zinc diphosphonate prepared in the presence of an organic amine molecule.  相似文献   

5.
Preparation, Crystal Structure, and Magnetism of [(CH3)2NH2][NdCl4(H2O)2] The complex water containing chloride [(CH3)2NH2][NdCl4(H2O)2] was prepared for the first time and the crystal structure was determined by X‐ray methods from single crystals. The compound crystallizes in the orthorhombic space group Cmca (Z = 8) with a = 1793.5(2) pm, b = 936.6(2) pm and c = 1232.8(2) pm. The anionic part of the structure is built up by chains of edge connected [NdCl4/2Cl2(H2O)2] trigondodecahedra. In order to study the interactions between the neodymium cation and the ligands magnetic measurements were carried out. The magnetic data were interpreted by ligand field calculations applying the angular overlap model.  相似文献   

6.
Preparation, Crystal Structure, and Magnetism of [(CH3)2NH2][PrCl4(H2O)2] The complex water containing chloride [(CH3)2NH2][PrCl4(H2O)2] has been prepared for the first time and the crystal structure has been determined from single crystal X‐ray diffraction data. The compound crystallizes orthorhombically in the space group Cmca (Z = 8) with a = 1796.6(2) pm, b = 940.7(1) pm, and c = 1238.4(2) pm. The anionic part of the structure is built up by chains of edge‐connected trigondodecahedra [PrCl6(H2O)2]3– according to [PrCl4/2Cl2(H2O)2], which are held together by dimethylammonium cations ([(CH3)2NH2]+). In order to study the interactions between the praseodymium cation (Pr3+) and the ligands magnetic measurements were carried out. The magnetic data were interpreted by ligand field calculations applying the angular overlap model.  相似文献   

7.
Phosphaneimine and Phosphoraneiminato Complexes of Boron. Synthesis and Crystal Structures of [BF3(Me3SiNPEt3)], [BCl2(NPPh3)]2, [BCl2(NPEt3)]2, [B2Cl3(NPEt3)2]+BCl4?, and [B2Cl2(NPiPr3)3]+BCl4? The title compounds have been prepared from the corresponding silylated phosphaneimines and boron trifluoride etherate and boron trichloride, respectively. The compounds form white moisture sensitive crystals, which were characterized by 11B-nmr-spectroscopy, IR-spectroscopy and by crystal structure determinations. [BF3(Me3SiNPEt3)] : Space group P21/c, Z = 4, R = 0.032 for reflections with I > 2σ(I). Lattice dimensions at ?70°C: a = 1361.0, b = 819.56, c = 1422.5 pm, β = 109.86°. The donor acceptor complex forms monomeric molecules with a B? N bond length of 157.8 pm. [BCl2(NPPh3)]2 · 2 CH2Cl2 : Space group P21/c, Z = 2, R = 0.049 for reflections with I > 2σ(I). Lattice dimensions at ?50°C: a = 1184.6, b = 2086.4, c = 843.0 pm, β = 96.86°. The compound forms centrosymmetric dimeric molecules in which the boron atoms are linked to B2N2 four-membered rings with B? N distances of 152.7 pm via μ2-N bridges of the NPPh3 groups. [BCl2(NPEt3)]2 : Space group Pbca, Z = 4, R = 0.029 for reflections with I > 2σ(I). Lattice dimensions at ?90°C: a = 1269.5, b = 1138.7, c = 1470.3 pm. The compound has a molecular structure corresponding to the phenyl compound with B? N ring distances of 151.0 pm. [B2Cl3(NPEt3)2]+BCl4? : Space group Pbca, Z = 8, R = 0.034 for reflections with I > 2σ(I). Lattice dimensions at ?70°C: a = 1309.3, b = 1619.8, c = 2410.7 pm. Within the cations the boron atoms are linked to planar, asymmetrical B2N2 four-membered rings with B? N distances of 155.1 and 143.1 pm via the μ2-N atoms of the NPEt3 groups. [B2Cl2(NPiPr3)3]+BCl4? · CH2Cl2: Space group Pna2, Z = 4, R = 0.033 for reflections with I > 2σ(I). Lattice dimensions at ?70°C: a = 1976.5, b = 860.2, c = 2612.7 pm. Within the cations the boron atoms are linked to planar, asymmetrical B2N2 four-membered rings with B? N distances of 153.7 and 150.5 pm via the μ2-N atoms of two of the NPiPr3 groups. The third NPiPr3 group is terminally connected to the sp2-hybridized boron atom with a B? N distance of 133.5 pm and with a B? N? P bond angle of 165.3°.  相似文献   

8.
Diorganogallium Fluorides. The Crystal Structure of the Mixed Crystal [B(CH2Ph)3]0.92[Ga(CH2Ph)3]0.08 · NCMe The reaction of GaR3 with BF3 · OEt2 in diethylether leads to the diorganogallium fluorides R2GaF [R = i-Pr ( 1 ), CH2Ph ( 2 ), Mes ( 3 )]. Compound 1 is also available by the reaction of i-Pr2GaBr ( 6 ) with KF at ?20°C in acetonitrile. The by-product B(CH2Ph)3, formed together with 2 during the first reaction, crystallizes with ca. 8% Ga(CH2Ph)3 in acetonitrile as [B(CH2Ph)3]0.92[Ga(CH2Ph)3]0.08 · NCMe ( 4 ) in the space group P21/n with a = 1050.32(7) pm, b = 1159.5(2) pm, c = 1591.6(1) pm and β = 96.931(6)°.  相似文献   

9.
A one‐dimensional aluminum phosphate, [NH3(CH2)2NH2(CH2)3NH3]3+ [Al(PO4)2]3—, has been synthesized hydrothermally in the presence of N‐(2‐Aminoethyl‐)1, 3‐diaminopropane (AEDAP) and its structure determined by single crystal X‐ray diffraction. Crystal data: space group = Pbca (no. 61), a = 16.850(2), b = 8.832(1), c = 17.688(4)Å, V = 2632.4(2)Å3, Z = 8, R1 = 0.0389 [5663 observed reflections with I > 2σ(I)]. The structure consists of anionic [Al(PO4)2]3— chains built up from AlO4 and PO4 tetrahedra, in which all the AlO4 vertices are shared and each PO4 tetrahedron possesses two terminal P=O linkages. The cations, which balances the negative charge of the chains, are located in between the chains and interact with the oxygen atoms through strong N—H···O hydrogen bonds. Additional characterization of the compound by powder XRD and MAS‐NMR has also been performed and described.  相似文献   

10.
Two new borosulfates were obtained either by an open vessel synthesis from sulfuric acid and B(OH)3, yielding (NH4)3[B(SO4)3] or from solvothermal synthesis in oleum enriched sulfuric acid and B(OH)3, yielding Sr[B2(SO4)4]. (NH4)3[B(SO4)3] crystallizes homeotypic to K3[B(SO4)3] in space group Ibca (Z = 8, a = 728.58(3) pm, b = 1470.84(7) pm, c = 2270.52(11) pm), comprising open branched vierer single chains {1[B(SO4)2(SO4)2/2]3–}. Sr[B2(SO4)4] crystallizes as an ordered variant of Pb[B2(SO4)4] in space group Pnna (Z = 4, a = 1257.4(4) pm, b = 1242.1(4) pm, c = 731.9(2) pm), consisting of loop branched vierer single chains {1[B(SO4)4/2]2–}. Vibrational spectroscopy confirms both refined structure models. Thermal analysis of the dried powders, showed a decomposition towards the binary and ternary components, whereas a thermal treatment in the presence of the mother liquor promotes a decomposition of Sr[B2(SO4)4] towards Sr[B2O(SO4)3].  相似文献   

11.
Crystal Structures of [Ph3PMe]Cl·CH2Cl2, [Ph4P]NO3·CH2Cl2, and [Ph4P]2[SiF6]·CH2Cl2 The crystal structures of the title compounds are determined by X‐ray diffraction. In all cases, the included dichloromethane molecules as well as the phosphonium cations are involved to form hydrogen bridges with the anions. [Ph3PMe]Cl·CH2Cl2 ( 1 ): Space group , Z = 2, lattice dimensions at 100 K: a = 890.3(1), b = 988.0(1), c = 1162.5(1) pm, α = 106.57(1)°, β = 91.79(1)°, γ = 92.60(1)°, R1 = 0.0253. [Ph4P]NO3·CH2Cl2 ( 2 ): Space group P21/n, Z = 4, lattice dimensions at 193 K: a = 1057.0(1), b = 1666.0(1), c = 1358.9(1) pm, β = 100.10(1)°, R1 = 0.0359. [Ph4P]2[SiF6]·CH2Cl2 ( 3 ): Space group , Z = 2, lattice dimensions at 193 K: a = 1063.9(1), b = 1233.1(1), c = 1782.5(2) pm, α = 76.88(1)°, β = 83.46(1)°, γ = 72.29(1)°, R1 = 0.0332.  相似文献   

12.
Bis(tetramethylammonium) dodecahydrododecaborate, [(CH3)4N]2[B12H12], and bis(tetramethylammonium) dodecahydrododecaborate acetonitrile, [(CH3)4N]2[B12H12] · CH3CN, were synthesized and characterized via Infrared, 1H and 11B NMR spectroscopy. [(CH3)4N]2[B12H12] crystallizes isopunctual to the alkali metal dodecaborates. The crystal structure of [(CH3)4N]2[B12H12] · CH3CN was determined from single crystal data and refined in the orthorhombic crystal system (Pcmn, no. 62, a = 898.68(8), b = 1312.85(9) c = 1994.5(1) pm, R(|F| , 4σ) = 5.9%, wR(F2) = 18.3%). Here, the geometry of the dodecaborate anion is that of an almost ideal icosahedron, less distorted than most other dodecaborates known. By low‐temperature Guinier‐Simon diffractometry phase transitions were detected for [(CH3)4N]2[B12H12] and [(CH3)4N]2[B12H12] · CH3CN at –70 and –15 °C, respectively.  相似文献   

13.
TiCl4 reacts quantitatively with Cl2Si(NHSiMe3)2 in n‐pentane under evolution of Me3SiCl yielding [μ‐ClTiCl2N(SiMe3)‐SiCl2NH2]2 ( 1 ), which is obtained as a yellow, crystalline solid forming small intergrown needles, that rapidly hydrolyse. The product 1 shows a thermal stability up to 80?C. The molecular structure of 1 has been solved by X‐ray powder diffraction methods and it could be confirmed by single‐crystal X‐ray structure determination at ‐70 ?C. Accordingly, in the solid 1 is a dimer ([μ‐ClTiCl2N(SiMe3)SiCl2NH2]2, P21/n (no. 14), Z = 2, a = 1504.89(6), b = 1296.33(6), c = 710.90(4) pm, and β = 91.276(2)?).  相似文献   

14.
Single crystals of [Be33‐O)3(MeCN)6{Be(MeCN)3}3](I)6·4CH3CN ( 1 ·4CH3CN) were obtained in low yield by the reaction of beryllium powder with iodine in acetonitrile suspension, which probably result from traces of beryllium oxide containing the applied beryllium metal. The compound 1 ·4CH3CN forms moisture sensitive, colourless crystal needles, which were characterized by IR spectroscopy and X‐ray diffraction (Space group Pnma, Z = 4, lattice dimensions at 100(2) K: a = 2317.4(1), b = 2491.4(1), c = 1190.6(1) pm, R1 = 0.0315). The hexaiodide complex cation 1 6+consists of a cyclo‐Be3O3 core with slightly distorted chair conformation, stabilized by coordination of two acetonitrile ligands at each of the beryllium atoms and by a {Be(CH3CN)3}2+ cation at each of the oxygen atoms. This unique coordination behaviour results in coplanar OBe3 units with short Be–O distances of 155.0 pm and 153.6 pm on average of bond lengths within the cyclo‐Be3O3 unit and of the peripheric BeO bonds, respectively. Exposure of compound 1 ·4CH3CN to moist air leads to small orange crystal plates of [Be(H2O)4]I2·2CH3CN ( 3 ·2CH3CN). According to the crystal structure determination (Space group C2/c, Z = 4, lattice dimensions at 100(2) K: a = 1220.7(1), b = 735.0(1), c = 1608.5(1) pm, β = 97.97(1)°, R1 = 0.0394), all hydrogen atoms of the dication [Be(H2O)4]2+ are involved to form O–H ··· N and O–H ··· I hydrogen bonds with the acetonitrile molecules and the iodide ions, respectively. Quantum chemical calculations (B3LYP/6‐311+G**) at the model [Be33‐O)3(HCN)6{Be(HCN)3}3]6+ show that chair and boat conformation are stable and that the distorted chair conformation is stabilized by packing effects.  相似文献   

15.
Reactions of K4[SnSe4], Na4[GeS4] or Ba2[GeSe4] with different 1,2‐diaminoethane (= en) coordinated complexes of CrCl3 ([Cr(en)2Cl2]Cl or [Cr(en)3]Cl3) in MeOH or aqueous solution yielded three novel compounds that contain complexes of Cr3+ with ortho‐chalcogenotetrelate anions [E′E4]4? (E′ = Ge, Sn; E = S; Se): the crystal structures of [K6(MeOH)9][Sn2Se6][Cr(en)2(SnSe4)]2 ( 1 ), [Na(H2O)4][Cr(en)3]2[GeS3OH]2[Cr(en)2(GeS4)] ( 2 ), and [Ba(H2O)10][{Cr(en)}2(GeSe4)2] ( 4 ) have been determined by means of single crystal X‐ray diffraction ( 1 : triclinic space group ; lattice dimensions at 203 K: a = 1175.7(2), b = 1315.3(3), c = 1326.7(3) pm, α = 61.99(3)°, β = 64.05(3)°, γ = 83.57(3)°, V = 1617.4(6)·106 pm3; R1 [I > 2σ(I)] = 0.0788; wR2 = 0.1306; 2 : monoclinic space group C2/c; lattice dimensions at 203 K: a = 2445.3(5), b = 1442.5(3), c = 1579.3(3) pm, β = 94.61(3)°, V = 5552.9(19)·106 pm3; R1 [I > 2σ(I)] = 0.0801; wR2 = 0.2046; 4 : triclinic space group ; lattice dimension at 203 K: a = 1198.4(2), b = 1236.8(3), c = 1297.5(3) pm, α = 65.69(3)°, β = 63.35(3)°, γ = 81.21(3)°, V = 1565.2(5)·106 pm3; R1 [I > 2σ(I)] = 0.0732; wR2 = 0.1855). 1 and 2 show the yet unprecedented complexation of transition metal ions by non‐bridging, single chalcogenotetrelate ligands to produce dinuclear, heterobimetallic complexes. Compound 2 contains the first structurally characterized complex with an ortho‐thiogermanate ligand. The formation of these compounds, and of a by‐product of 2 , [Cr(en)3][GeS3OH]·6H2O ( 3 : monoclinic space group C2/c; lattice dimensions at 203 K: a = 2396.8(5), b = 1463.4(3), c = 1740.1(4) pm, β = 132.99(3)°, V = 4463.8(15)·106 pm3; R1 [I > 2σ(I)] = 0.0462; wR2 = 0.1058), provides some insight in fundamental differences between the reaction behavior of [SnE4]4? anions one the one hand and [GeE4]4? anions on the other hand. The crucial role of the counterion charge becomes evident when comparing the structure motifs of the ternary anions in 1 and 2 with that observed in the Ba2+ compound 4 .  相似文献   

16.
Reactions of the Gallium‐containing Heterocycle [Me2Ga{HNC(Me)}2CCN] The reaction of [Me2Ga{HNC(Me)}2CCN] ( 1 ) with fac‐[Mo(CO)3(MeCN)3] leads after addition of TMEDA to the molybdenum complex fac‐[Mo(CO)3( 1 )(TMEDA)] ( 2 ). Under identical reaction conditions with fac‐[W(CO)3(MeCN)3] only the tetracarbonyle complex [W(CO)4(TMEDA)] ( 3 ) could be isolated. Treatment of dilithiated 1 with Me2SiCl2 or InCl3 initiate a fragmentation of the skeleton in 1 . Obtained were the salt [Me2Ga(TMEDA)][Me2GaCl2] ( 4 ) and the indium complex [Me2InCl(TMEDA)] ( 5 ), respectively. 2 — 5 were investigated by spectroscopical and spectrometrical methods as well as by X‐ray structure determinations. According to these 1 occupies a facial site in 2 by donation of the N‐Atom from the NC group in 1 . The molecules 2 are forming a network of hydrogen bonds. In 3 , the TMEDA ligand acts as an intramolecular chelate ligand. In the salt 4 , the cation as well as the anion are coordinated in a distorted tetrahedral environment, while in 5 a distorded trigonal‐bipyramidal coordination‐sphere is present, leading to a elongated In1‐Cl1 distance of 261.74(9) pm.  相似文献   

17.
Solvent-free Synthesis of Tetramethylammonium Salts: Synthesis and Characterization of [N(CH3)4]2[C2O4], [N(CH3)4][CO3CH3], [N(CH3)4][NO2], [N(CH3)4][CO2H], and [N(CH3)4][O2C(CH2)2CO2CH3] A general procedure to synthesize tetramethylammonium salts is presented. Several tetramethylammonium salts were prepared in a crystalline state by solvent-free reaction of trimethylamine and different methyl compounds at mild conditions: [N(CH3)4]2[C2O4] (cubic; a = 1 114.8(3) pm), [N(CH3)4][CO3CH3] (P21/n; a = 813.64(3), b = 953.36(3), c = 1 131.3(4) pm, β = 90.03(1)°), [N(CH3)4][NO2] (Pmmn; a = 821.2(4), b = 746.5(3), c = 551.5(2) pm), [N(CH3)4][CO2H] (Pmmn; a = 792.8(7), b = 791.7(3), c = 563.3(4) pm) and [N(CH3)4][O2C(CH2)2CO2CH3] (P21; a = 731.1(2), b = 826.4(3), c = 1 025.2(3) pm, β = 110.1(1)°). The tetramethylammonium salts were characterized by IR-spectroscopy and X-ray diffraction. The crystal structures of the methylcarbonate and the nitrite are described.  相似文献   

18.
A hydrothermal reaction of iron acetylacetonate, phosphoric acid, HF, N, N′‐bis(3‐aminopropyl)ethylenediamine and water at 150 °C gave rise to a new iron phosphate, [H3N(CH2)3NH2(CH2)2NH2(CH2)3NH3][Fe3F6(HPO4)2(PO4)] · 3H2O ( I ). The structure consists of Fe(1)O4F2, Fe(2)O3F3 octahedral and P(1)O3(OH) and P(2)O4 tetrahedral building units connected through their vertices to form fragments of tancoite‐type units. The tancoite‐type units are linked through the phosphate tetrahedra forming an unusual iron phosphate with a hitherto unknown low‐dimensional structure with three‐iron center.Magnetic studies indicate a complex behavior at low temperature and the high‐temperature data (150 — 300 K) has a Curie‐Weiss behavior. The calculated room temperature magnetic moment is 6 μB per Fe atom, and the Neel temperature, TN = 46K. Crystal data: orthorhombic, space group = I212121 (no. 24), a = 9.9042(11), b = 12.8865(14), c = 19.783(2)Å, U = 2524.9(5), Z = 4.  相似文献   

19.
Preparation and Structure of (3‐Methylpyridinium)3[DyCl6] and (3‐Methylpyridinium)2[DyCl5(Ethanol)] The complex chlorides (3‐Methylpyridinium)3[DyCl6] ( 1 ) and (3‐Methylpyridinium)2[DyCl5(Ethanol)] ( 2 ) have been prepared for the first time. The crystal structures have been determined from single crystal X‐ray diffraction data. 1 crystallizes in the trigonal space group R3c (Z = 36) with a = 2953.3(3) pm, b = 2953.3(3) pm and c = 3252.5(4) pm, compound 2 crystallizes in the triclinic space group P1 (Z = 2) with a = 704.03(8) pm, b = 808.10(8) pm, c = 1937.0(2) pm, α = 77.94(1)°, β = 87.54(1)° and γ = 83.26(1)°. The structures contain isolated octahedral building units [DyCl6]3– and [DyCl5(Ethanol)]2–, respectively.  相似文献   

20.
Colourless, lath‐shaped single crystals of Cs2[B12I12] · 2 CH3CN (monoclinic, C2/m; a = 1550.3(2), b = 1273.2(1), c = 1051.5(1) pm, β = 120.97(1)°; Z = 2) are obtained by the reaction of Cs2[B12H12] with an excess of I2 and ICl (molar ratio: 1 : 2) in methylene iodide (CH2I2) at 180 °C (8 h) and recrystallization of the crude product from acetonitrile (CH3CN). The crystal structure contains quasi‐icosahedral [B12I12]2– anions (d(B–B) = 176–182 pm, d(B–I) = 211–218 pm) which arrange in a cubic closest‐packed fashion. All octahedral interstices are filled with centrosymmetric dimer‐cations {[Cs(N≡C–CH3)]2}2+ containing a diamond‐shaped four‐membered (Cs–N–Cs–N) ring of Cs+ cations and nitrogen atoms of the solvating acetonitrile molecules (d(Cs–N) = 321 pm, 2 ×). The cesium cations themselves actually reside in the distorted tetrahedral voids of the cubic [B12I12]2– packing (d(Cs–I) = 402–461 pm, 10 ×) if one ignores the solvent particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号