首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis and Crystal Structure of [N(Hex)4] [Cu2(CN)3] [N(Hex)4][Cu2(CN)3] has been prepared by solvothermal reaction of CuCN with Tetra‐n‐hexylammoniumiodide in acetone. The crystal structure is built up by condensed (CuCN)6 and (CuCN)7 rings, forming a zeolith type cyanocuprate(I) framework [Cu2(CN)3]. Space group R3; α = 44.482(6), c = 21.283(4) Å, V = 36471(9) Å3; Z = 9.  相似文献   

2.
Synthesis, Crystal Structure, and Properties of Tetrasodium Bis(trimetaphosphimato)cuprate(II) Decahydrate, Na4{Cu[(PO2NH)3]2} · 10 H2O Tetrasodium bis(trimetaphosphimato)cuprate(II) decahydrate, Na4{Cu[(PO2NH)3]2} · 10 H2O, was obtained by the reaction of an aqueous solution of Na3(PO2NH)3 · 4 H2O with Cu(NO3)2 · 3 H2O (molar ratio 2 : 1). The structure of Na4{Cu[(PO2NH)3]2} · 10 H2O ( 1 ) was solved by single‐crystal X‐ray methods (P 1, a = 912.51(6), b = 932.14(6), c = 966.10(6) pm, α = 94.840(5), β = 108.652(6), γ = 118.588(6)°, Z = 1). The P3N3 rings of the trimetaphosphimate ions exhibit a slightly distorted sofa conformation. The conformation of the anions have been analysed using torsion angles, displacement asymmetry parameters, and puckering parameters. The trimetaphosphimate ions act as bidentate ligands of Cu2+. With additionally coordinated water molecules, anionic complexes {Cu[(PO2NH)3]2 · 2 H2O}4– are formed. In the crystal these complexes are interconnected by N–H…O und O–H…O hydrogen bonds and they coordinate the Na+. Thus, a three‐dimensional network is formed.  相似文献   

3.
Syntheses and NMR Spectroscopic Ivestigations of Salts containing the Novel Anions [PtXn(CF3)6‐n]2— (n = 0 ‐ 5, X = F, OH, Cl, CN) and Crystal Structure of K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O The first syntheses of trifluoromethyl‐complexes of platinum through fluorination of cyanoplatinates are reported. The fluorination of tetracyanoplatinates(II), K2[Pt(CN)4], and hexacyanoplatinates(IV), K2[Pt(CN)6], with ClF in anhydrous HF leads after working up of the products to K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O. The structure of the salt is determined by a X‐ray structure analysis, P21/c (Nr. 14), a = 11.391(2), b = 11.565(2), c = 13.391(3)Å, β = 90.32(3)°, Z = 4, R1 = 0.0326 (I > 2σ(I)). The reaction of [Bu4N]2[Pt(CN)4] with ClF in CH2Cl2 generates mainly cis‐[Bu4N]2[PtCl2(CF3)4] and fac‐[Bu4N]2[PtCl3(CF3)3], but in contrast that of [Bu4N]2[Pt(CN)6] with ClF in CH2Cl2 results cis‐[Bu4N]2[PtX2(CF3)4], [Bu4N]2[PtX(CF3)5] (X = F, Cl) and [Bu4N]2[Pt(CF3)6]. In the products [Bu4N]2[PtXn(CF3)6‐n] (X = F, Cl, n = 0—3) it is possibel to exchange the fluoro‐ligands into chloro‐ and cyano‐ligands by treatment with (CH3)3SiCl und (CH3)3SiCN at 50 °C. With continuing warming the trifluoromethyl‐ligands are exchanged by chloro‐ and cyano‐ligands, while as intermediates CF2Cl and CF2CN ligands are formed. The identity of the new trifluoromethyl‐platinates is proved by 195Pt‐ and 19F‐NMR‐spectroscopy.  相似文献   

4.
5.
Preparation and Structure of (3‐Methylpyridinium)3[DyCl6] and (3‐Methylpyridinium)2[DyCl5(Ethanol)] The complex chlorides (3‐Methylpyridinium)3[DyCl6] ( 1 ) and (3‐Methylpyridinium)2[DyCl5(Ethanol)] ( 2 ) have been prepared for the first time. The crystal structures have been determined from single crystal X‐ray diffraction data. 1 crystallizes in the trigonal space group R3c (Z = 36) with a = 2953.3(3) pm, b = 2953.3(3) pm and c = 3252.5(4) pm, compound 2 crystallizes in the triclinic space group P1 (Z = 2) with a = 704.03(8) pm, b = 808.10(8) pm, c = 1937.0(2) pm, α = 77.94(1)°, β = 87.54(1)° and γ = 83.26(1)°. The structures contain isolated octahedral building units [DyCl6]3– and [DyCl5(Ethanol)]2–, respectively.  相似文献   

6.
Preparation and Structure of (2‐Methylpyridinium)3[TbCl6] and (2‐Methylpyridinium)2[TbCl5(1‐Butanol)] The complex chlorides (2‐Methylpyridinium)3[TbCl6] (1) and (2‐Methylpyridinium)2[TbCl5(1‐Butanol)] (2) have been prepared for the first time. The crystal structures have been determinated from single crystal X‐ray diffraction data. 1 crystallizes in the monoclinic space group C2/c (Z = 8) with a = 3241,2(5) pm, b = 897,41(9) pm, c = 1774,2(2) pm and β = 97,83(2)°, 2 in the monoclinic space group P21/n (Z = 4) with a = 1372,96(16) pm, b = 997,57(9) pm, c = 1820,5(2) pm and β = 108,75(1)°. The structures contain isolated octahedral building units [TbCl6]3– and [TbCl5(1‐Butanol)]2–, respectively.  相似文献   

7.
The Crystal Structures of (DDI)2[Sb2F6O] and (DDI)2[Sb3F7O2] (DDI = 1,3‐Diisopropyl‐4,5‐dimethylimidazolium) — a Contribution to the Hydrolysis of SbF3 [1] The salts (DDI)2[Sb2F6O] ( 2 ) and (DDI)2[Sb3F7O2] ( 3 ), (DDI = 1,3‐diisopropyl‐4,5‐dimethylimidazolium) are obtained by hydrolysis of C11H20N2SbF3 ( 1 ). The anion [Sb2F6O]2? consists of two SbF2 fragments linked by a symmetrical oxygen bridge and two unsymmetrical fluorine bridges to form a distored ψ‐octahedral coordination sphere at the antimony atoms. In [Sb3F7O2]2?, two SbF2 units are linked by a symmetrical fluorine bridge, while the third antimony atom is connected with each SbF2 fragment by a symmetrical oxygen and an unsymmetrical fluorine bridge. The antimony atoms adopt the centres of strongly distored ψ‐polyhedra.  相似文献   

8.
Structures of Bis(trifluoromethyl)halogeno and thiocyanato Mercurates, [Hg(CF3)2X] (X = Br, I, SCN), and a Comparison of the Structural Parameters of the CF3 Groups [(18‐C‐6)K]2[Hg(CF3)2SCN]2 (1) and [P(CH3)(C6H5)3]2[Hg(CF3)2X]2 (X = Br (2) , I (3) ) are prepared and their crystal structures are determined. [(18‐C‐6)K]2[Hg(CF3)2SCN]2 (1) crystallizes in the monoclinic space group P21/c with Z = 2, [P(CH3)(C6H5)3]2[Hg(CF3)2Br]2 (2) in the monoclinic space group P21/n with Z = 2 and [P(CH3)(C6H5)3]2[Hg(CF3)2I]2 (3) in the triclinic space group P1¯ with Z = 1. In the solid state the three compounds form dimeric anions with planar Hg2X2 rings. The structural parameters of the Hg(CF3)2 units in the till now known bis(trifluoromethyl)halogeno mercurates are compared. In all compounds one nearly symmetric and one distorted CF3 group exist. The largest differences of the C—F bond lengths is found for [(18‐C‐6)K][Hg(CF3)2I]. This can be regarded as the experimental evidence for the properties of trifluoromethyl mercury compounds to act as excellent difluorocarbene sources in the presence of alkali iodides.  相似文献   

9.
Synthesis, Crystal Structures, and Vibrational Spectra of [Pt(N3)6]2– and [Pt(N3)Cl5]2–, 195Pt and 15N NMR Spectra of [Pt(N3)nCl6–n]2– and [Pt(15NN2)n(N215N)6–n]2–, n = 0–6 By ligand exchange of [PtCl6]2– with sodium azide mixed complexes of the series [Pt(N3)nCl6–n]2– and with 15N‐labelled sodium azide (Na15NN2) mixtures of the isotopomeres [Pt(15NN2)n(N215N)6–n]2–, n = 0–6 and the pair [Pt(15NN2)Cl5]2–/[Pt(N215N)Cl5]2– are formed. X‐ray structure determinations on single crystals of (Ph4P)2[Pt(N3)6] ( 1 ) (triclinic, space group P1, a = 10.175(1), b = 10.516(1), c = 12.380(2) Å, α = 87.822(9), β = 73.822(9), γ = 67.987(8)°, Z = 1) and (Ph4As)2[Pt(N3)Cl5] · HCON(CH3)2 ( 2 ) (triclinic, space group P1, a = 10.068(2), b = 11.001(2), c = 23.658(5) Å, α = 101.196(14), β = 93.977(15), γ = 101.484(13)°, Z = 2) have been performed. The bond lengths are Pt–N = 2.088 ( 1 ), 2.105 ( 2 ) and Pt–Cl = 2.318 Å ( 2 ). The approximate linear azido ligands with Nα–Nβ–Nγ‐angles = 173.5–174.6° are bonded with Pt–Nα–Nβ‐angles = 116.4–121.0°. In the vibrational spectra the PtCl stretching vibrations of (n‐Bu4N)2[Pt(N3)Cl5] are observed at 318–345, the PtN stretching modes of (n‐Bu4N)2[Pt(N3)6] at 401–428 and of (n‐Bu4N)2[Pt(N3)Cl5] at 408–413 cm–1. The mixtures (n‐Bu4N)2[Pt(15NN2)n(N215N)6–n], n = 0–6 and (n‐Bu4N)2[Pt(15NN2)Cl5]/(n‐Bu4N)2[Pt(N215N)Cl5] exhibit 15N‐isotopic shifts up to 20 cm–1. Based on the molecular parameters of the X‐ray determinations the vibrational spectra are assigned by normal coordinate analysis. The average valence force constants are fd(PtCl) = 1.93, fd(PtNα) = 2.38 and fd(NαNβ, NβNγ) = 12.39 mdyn/Å. In the 195Pt NMR spectrum of [Pt(N3)nCl6–n]2–, n = 0–6 downfield shifts with the increasing number of azido ligands are observed in the range 4766–5067 ppm. The 15N NMR spectrum of (n‐Bu4N)2[Pt(15NN2)n(N215N)6–n], n = 0–6 exhibits by 15N–195Pt coupling a pseudotriplett at –307.5 ppm. Due to the isotopomeres n = 0–5 for terminal 15N six well‐resolved signals with distances of 0.03 ppm are observed in the low field region at –201 to –199 ppm.  相似文献   

10.
Synthesis and Spectroscopic Characterization of [Rh(SeCN)6]3– and trans ‐[Rh(CN)2(SeCN)4]3–, Crystal Structure of (Me4N)3[Rh(SeCN)6] Treatment of RhCl3 with KSeCN in acetone yields a mixture of selenocyanato‐rhodates(III), from which [Rh(SeCN)6]3– and trans‐[Rh(CN)2(SeCN)4]3– have been isolated by ion exchange chromatography on diethylaminoethyl cellulose. The X‐ray structure determination on a single crystal of (Me4N)3[Rh(SeCN)6] (trigonal, space group R3, a = 14.997(2), c = 24.437(3) Å, Z = 6) reveals, that the compound crystallizes isotypically to (Me4N)3[Ir(SCN)6]. The exclusively via Se coordinated selenocyanato ligands are bonded with the average Rh–Se distance of 2.490 Å and the Rh–Se–C angle of 104.6°. In the low temperature IR and Raman spectra the metal ligand stretching modes ν(RhSe) of (n‐Bu4N)3[Rh(SeCN)6] ( 1 ) and trans‐(n‐Bu4N)3[Rh(CN)2(SeCN)4] ( 2 ) are in the range of 170–250 cm–1. In 2 νas(CRhC) is observed at 479 cm–1. The vibrational spectra are assigned by normal coordinate analysis based on the molecular parameters of the X‐ray determination. The valence force constants are fd(RhSe) = 1.08 ( 1 ), 1.10 ( 2 ) and fd(RhC) = 3.14 mdyn/Å ( 2 ). fd(RhS) = 1.32 mdyn/Å is determined for [Rh(SCN)6]3–, which has not been calculated so far. The 103Rh NMR resonances are 2287 ( 1 ), 1680 ppm ( 2 ) and the 77Se NMR resonances are –32.7 ( 1 ) and –110.7 ppm ( 2 ). The Rh–C bonding of the cyano ligand in 2 is confirmed by a dublett in the 13C NMR spectrum at 136.3 ppm.  相似文献   

11.
Action of Ammonium Fluoride on Scandium: Synthesis and Crystal Structures of (NH4)3[ScF6] and [Cu(NH3)4]3[ScF6]2 The action of (NH4)F on scandium in copper ampoules yields either (NH4)3[ScF6] or ScF3 and a small quantity of [Cu(NH3)4]3[ScF6]2, respectively, depending upon the molar ratio of the educts (NH4)F : Sc (6 : 1 and 4 : 1, respectively) and temperature. (NH4)3[ScF6] crystallizes with the cryolite type of structure: monoclinic, P21/n, Z = 2; a = 650.0(2); b = 651.4(2); c = 949.0(2) pm; β = 90.40(2)°, [Cu(NH3)4]3[ScF6]2 is triclinic, P‐1, Z = 1; a = 821.1(2); b = 821.2(2); c = 822.7(2) pm; α = 90.04(3); β = 90.00(3); γ = 90.16(3)°. In its chemical behaviour against (NH4)F, scandium parallels aluminium rather than gallium.  相似文献   

12.
On the Crystal Structures of the Cyano Complexes [Co(NH3)6][Fe(CN)6], [Co(NH3)6]2[Ni(CN)4]3 · 2 H2O, and [Cu(en)2][Ni(CN)4] Of the three title compounds X‐ray structure determinations were performed with single crystals. [Co(NH3)6][Fe(CN)6] (a = 1098.6(6), c = 1084.6(6) pm, R3, Z = 3) crystallizes with the CsCl‐like [Co(NH3)6][Co(CN)6] type structure. [Co(NH3)6]2[Ni(CN)4]3 · 2 H2O (a = 805.7(5), b = 855.7(5), c = 1205.3(7) pm, α = 86.32(3), β = 100.13(3), γ = 90.54(3)°, P1, Z = 1) exhibits a related cation lattice, the one cavity of which is occupied by one anion and 2 H2O, whereas the other contains two anions parallel to each other with distance Ni…Ni: 423,3 pm. For [Cu(en)2][Ni(CN)4] (a = 650.5(3), b = 729.0(3), c = 796.5(4) pm, α = 106.67(2), β = 91.46(3), γ = 106.96(2)°, P1, Z = 1) the results of a structure determination published earlier have been confirmed. The compound is weakly paramagnetic and obeys the Curie‐Weiss law in the range T < 100 K. The distances within the complex ions of the compounds investigated (Co–N: 195.7 and 196.4 pm, Ni–C: 186.4 and 186.9 pm, resp.) and their hydrogen bridge relations are discussed.  相似文献   

13.
Bipy, Phen, and P(C6H4CH2NMe2‐2)3 in the Synthesis of Cationic Silver(I) Complexes; the Solid‐State Structures of [P(C6H4CH2NMe2‐2)3]AgOTf and [Ag(phen)2]OTf The reaction of [P(C6H4CH2NMe2‐2)3]AgX ( 1a , X = OTf; 1b , X = OClO3) with equimolar amounts of LcapL ( 2a , LcapL = 2, 2′‐bipyridine, bipy; 2b , LcapL = 4, 4′‐dimethyl‐2, 2′‐bipyridine, bipy′; 2c , LcapL = 1, 10‐phenanthroline, phen) leads to the formation of the cationic complexes {[P(C6H4CH2NMe2‐2)3]Ag(LcapL)}+X (LcapL = bipy: 3a , X = OTf; 3b , X = ClO4; LcapL = bipy′: 3c , X = OTf; 3d , X = ClO4; LcapL = phen: 3e , X = OTf; 3f , X = ClO4) in which the building blocks LcapL and P(C6H4CH2NMe2‐2)3 act as bidentate chelating ligands and are datively‐bound to the silver atom. Spectroscopic studies reveal that on the NMR time‐scale the phosphane group is dynamic with exchanging the respective Me2NCH2 built‐in arms. While complex 3e is stable in the solid‐state, it appeared that solutions of 3e start to decompose upon precipitation of colloidal silver when they are heated or irradiated with light, respectively. Appropriate work‐up of the reaction mixture allows the isolation of the phosphane P(C6H4CH2NMe2‐2)3 ( 5 ) along with [Ag(phen)2]OTf ( 4 ). The solid‐state structures of neutral 1a and cationic 4 are reported. Mononuclear 1a crystallizes in the monoclinic space group P21/c with the cell parameters a = 16.7763(2), b = 14.7892(2), c = 25.44130(10)Å, β = 106.1260(10), V = 6063.83(11)Å3 and Z = 4 with 8132 observed unique reflections (R1 = 0.0712), while 4 crystallizes in the monoclinic space group C2/c with the cell parameters a = 26.749(3), b = 7.1550(10), c = 26.077(3)Å, β = 113.503(2), V = 4576.8(10)Å3 and Z = 4 with 6209 observed unique reflections (R1 = 0.0481). The unit cell of 1a consists of two independent molecules. In both molecules the silver atom possesses a distorted tetrahedral coordination sphere and a boat‐like conformation for the six‐membered AgPNCH2C2/phenyl cycles is found. In 4 , as typical for 1a , the silver atom possesses the coordination number 4. The two phen ligands are tilted by 40.63°. The OTf group is acting as non‐coordinating counter ion.  相似文献   

14.
Syntheses and Characterizations of the First Tris and Tetrakis(trifluoromethyl) Palladates(II) and Platinates(II), [M(CF3)3(PPh3)] and [M(CF3)4]2— (M = Pd, Pt) Tris(trifluoromethyl)(triphenylphosphino)palladate(II) and platinate(II), [M(CF3)3PPh3], and the tetrakis(trifluoromethyl)metallates, [M(CF3)4]2— (M = Pd, Pt), are prepared from the reactions of [MCl2(PPh3)2] and Me3SiCF3 / [Me4N]F or [I(CF3)2] salts in good yields. [Me4N][M(CF3)3(PPh3)] crystallize isotypically in the orthorhombic space group Pnma (no. 62) with Z = 4. The NMR spectra of the new compounds are described.  相似文献   

15.
Organofunctionalized alkyltin bromides have been synthesized from solvochemically activated tin metal and the corresponding alkyl bromide under mild conditions (95°C) and without the use of a catalyst. This synthetic method tolerates a variety of functional groups such as chloride, cyanide, or a carboxylic ester and can be applied to different chain lengths. Crystal structure analysis of as‐prepared [(H3COOCC2H4)2SnBr2] shows a close‐to‐octahedral environment for the tin atom, created by intramolecular ring formation through the carbonyl groups of the two carboxylic ester functionalities. [(H3COOCC2H4)2SnBr2]: space group P21/n, Z = 4, lattice parameters at 293 K: a = 10.32501(8) Å, b = 16.2350(1) Å, c = 8.14838(6) Å, b = 95.2319(5) °, R(F) = 0.056. The compound is isotypic to [(H3COOCC2H4)2SnCl2].  相似文献   

16.
[Tetrakis(acetonitrile)‐dibromo‐nickel(II)]‐di‐acetonitrile was obtained from a solution of nickel(II) dibromide in acetonitrile at 258 K. The crystal structure [monoclinic, P21/n (no.14), a = 1005.5(5), b = 831.3(5) , c = 1131.7(5) pm, β = 106.263(5)°, V = 908.1(8)·106 pm3, Z = 2, R1 for 1580 reflections with I0>2σ(I0): 0.0505] contains sixfold coordinated NiII atoms. Two trans coordinating bromide anions and four equatorial acetonitrile molecules form an elongated octahedron around the central NiII atom. [Ni(CH3CN)4Br2] octahedra are connected via hydrogen bonds to neighboring octahedra as well as to solvate acetonitrile molecules.  相似文献   

17.
Syntheses and Properties of Pentafluoroethylcopper(I) and ‐copper(III) Compounds: CuC2F5 · D, [Cu(C2F5)2], and (C2F5)2CuSC(S)N(C2H5)2 The reactions of Cd(C2F5)2 · D and Zn(C2F5)2 · D (D = 2 CH3CN, 2 DMF), respectively, with copper(I) halides in the presence of halides quantitatively yield the CuC2F5 compounds CuC2F5 · D and [Cu(C2F5)2]. The CuC2F5 complexes are identified by NMR spectroscopy, while [Cu(C2F5)2] is isolated as PNP salt (PNP = (C6H5)3PNP(C6H5)3+). Both compounds are excellent C2F5 group transfer reagents, even at low temperature. Oxidation of [Cu(C2F5)2] with [(C2H5)2NC(S)S]2 yields the crystalline Cu(III) compound (C2F5)2CuSC(S)N(C2H5)2 (monoclinic, C2/c).  相似文献   

18.
A three‐dimensional cyano‐bridged copper(II) complex, [Cu(dien)Ag(CN)2]2[Ag2(CN)3][Ag(CN)2] ( 1 ) (dien = diethylenetriamine), has been prepared and characterized by X‐ray crystallography. Complex 1 crystallized in the monoclinic space group P21/n with a = 6.988(2), b = 17.615(6), c = 12.564(4) Å, β = 90.790(5)°. The crystal consists of cis‐[Cu(dien)]2+ units bridged by [Ag(CN)2] to form a zig‐zag chain. The Ag atoms of the free and bridging [Ag(CN)2] link together to form additional infinite zig‐zag chains with short Ag···Ag distances. The presence of Ag···Ag interactions effectively increases the dimensionality from a 1‐D chain to a 3‐D coordination polymer.  相似文献   

19.
Synthesis and Crystal Structure of [(Ph3PAu)3NPPh3][PF6]2, a Gold(I) Phosphoraneiminato Complex The photolytic reaction of Ph3PAuN3 with Cr(CO)6 in THF yields the phosphoraneiminato complex [(Ph3PAu)3NPPh3]2+ in low yield as well as the cluster cation [(Ph3PAu)8]2+ as the main product. The phosphoraneiminato complex crystallizes from CH2Cl2 with [PF6]? ions as [(Ph3PAu)3NPPh3][PF6]2·CH2Cl2 in the triclinic space group with a = 1200.8(1), b = 1495.6(2), 2053.5(5), α = 86.97(2)°, β = 82.79(1)°, γ = 81.87(2)°, and Z = 2. The phosphoraneiminato ligand bridges through its N atom three Au atoms, which itself are connected to each other by weak aurophilic interactions.  相似文献   

20.
Synthesis and Characterisation of the Siloxialanes [H2AlOSiMe3]n and [HAl(OtBu)(OSiMe3)]2 as well as the Use of [H2AlOSiMe3]n and [H2AlOtBu]2 as Reducing Agents for a Tin(II) Amide Following the synthesis of [H2AlOtBu]2 ( 1 ) and [HAl(OtBu)2]2 ( 2 ) the siloxialane [H2AlOSiMe3]n ( 3 ) was synthesized and has been subject to single crystal X‐ray analysis for the first time. The molecule 3 is tetrameric (n = 4) in solution and polymeric (n = ∞) in the solid state. 3 is also obtained together with the siloxide [Al(OSiMe3)3]2 ( 5 ) by the reaction of the aluminiumhydride with the double molar amount of trimethylsilanol. The expected monohydride [HAl(OSiMe3)2]2 ( 4 ) was not formed. The heteroleptic monohydride [HAl(OtBu)(OSiMe3)]2 ( 6 ) was synthesized by the reaction of 3 with an equimolar amount of tert‐butanol and was also generated by the addition of trimethylsilanol to an equimolar amount of the alkoxialane [H2AlOtBu]2 ( 1 ). Compound 6 was characterized by single crystal X‐ray diffraction analysis. Additionally we investigated the reducing force of the dihydrides 1 and 3 towards the cyclic diazastannylene Me2Si(NtBu)2Sn ( 7 ). In the course of this reaction SnII in 7 was reduced to elementary tin whereas the hydrides were oxidized to hydrogene. Tin is obtained in its β‐form as found by powder‐X‐ray diffraction. The shapes of the metal precipitates (porous, sponge‐like pieces or nanoscaled powders) depend on the conditions of reactions. Besides the elements the spirocyclic aminoalkoxialane [Me2Si(NtBu)2AlOtBu]2 ( 8 ) or aminosiloxialane [Me2Si(NtBu)2AlOSiMe3]2 ( 9 ) are formed. Structural details of the molecules 8 and 9 can be derived from single crystal X‐ray analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号