首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The complete periodic series of alkali and alkaline earth cation variants (Li(+), Na(+), K(+), Rb(+), Cs(+), Mg(2+), Ca(2+), Sr(2+), and Ba(2+)) of clinoptilolite (Si : Al=5) and heulandite (Si : Al=3.5) aluminosilicate zeolites are examined by large-scale molecular dynamics utilizing a flexible SPC water and aluminosilicate force field. Calculated hydration enthalpies, radial distribution functions, and ion coordination environments are used to describe the energetic and structural components of extra-framework species while power spectra are used to examine the intermolecular dynamics. These data are correlated to evaluate the impact of ion-zeolite, ion-water, and water-zeolite interactions on the behavior of nanoconfined water. Analysis of the correlated data clearly indicates that the charge density of extra-framework cations appears to have the greatest influence on librational motions, while the anionic charge of the framework (i.e. Si:Al ratios) has a lesser impact.  相似文献   

2.
Hydrogen storage in low silica type X zeolites   总被引:2,自引:0,他引:2  
Low silica type X zeolites (LSX, Si/Al = 1) fully exchanged by alkali-metal cations (Li(+), Na(+), and K(+)) were studied for their hydrogen storage capacities. Hydrogen adsorption isotherms were measured separately at 77 K and <1 atm, and at 298 K and <10 MPa. It was found that the hydrogen adsorption capacity of LSX zeolite depended strongly on the cationic radius and the density of the cations that are located on the exposed sites. The interaction energies between H(2) and the cations follow the order Li(+) > Na(+) > K(+), as predicted based on the ionic radii. Oxygen anions on zeolite framework were minor adsorption sites. Li-LSX had an H(2) capacity of 1.5 wt % at 77 K and 1 atm, and a capacity of 0.6 wt % at 298 K and 10 MPa, among the highest of known sorbents. The hydrogen capacity in LSX zeolite by bridged hydrogen spillover was also investigated. A simple and effective technique was employed to build carbon bridges between the H(2) dissociation catalyst and the zeolite to facilitate spillover of hydrogen atoms. Thus, the hydrogen storage capacity of Li-LSX zeolite was enhanced to 1.6 wt % (by a factor of 2.6) at 298 K and 10 MPa. This is by far the highest hydrogen storage capacity obtained on a zeolite material at room temperature. Furthermore, the adsorption rates were fast, and the storages were shown to be fully reversible and rechargeable. Further optimization of the bridge building technique would lead to an additional enhancement of hydrogen storage.  相似文献   

3.
采用水溶液离子交换法制备了高Li+交换度的4A、13X和LSX分子筛,并在25 ℃下测定了它们的静态吸附等温线和动态穿透曲线.研究发现,高Li+离子交换度的4A、13X和LSX分子筛都具有较大的氮吸附容量和较高的氮氩分离选择性,说明高Li+离子交换度的4A、13X和LSX分子筛是较好的氮氩分离吸附剂.从动态穿透曲线结果来看,所研究的三种分子筛都有一个最优的吸附分离压力,在本文研究的压力范围内,这个最优压力在0.6 MPa附近.对比高锂交换度的三种分子筛,以高锂交换度的LSX分子筛的氮氩吸附分离性能最好.  相似文献   

4.
Ca2+交换的几种分子筛的氮氩分离性能   总被引:1,自引:0,他引:1  
采用水溶液离子交换法制备了Ca2+交换的4A、13X和LSX分子筛,并在25 ℃下测定了它们的静态吸附等温线和动态穿透曲线.研究发现, Ca2+交换的4A、13X和LSX分子筛对氮的吸附性能都明显优于其相应的钠型分子筛,而它们对氩的吸附量变化不大,说明Ca2+交换的这三种分子筛是较好的氮氩分离吸附剂.从动态吸附的结果来看,所研究的各种分子筛都有一个最优的吸附分离压力,在本论文研究的压力范围内,这个最优压力在0.6 MPa附近.由穿透曲线可推算出混合气体的吸附量,通过氮和氩在混合气体中的吸附量和相应纯气体吸附量的对比可以得出,对于氮氩吸附选择性较高的分子筛,氮的存在对氩的吸附量有较大的影响.  相似文献   

5.
The results of X-band EPR, X-ray absorption and Fourier transform infrared spectroscopy on Pt(NH(3))(4)(2+) exchanged NaX, NaY and NaA zeolites reveal after oxygen calcination at 573 K that diamagnetic Pt(2+) is not the only product. Calcination provides Pt(3+) cations, but depending on the heating rate, the decomposition of amino groups during calcination also produces hydrogen that reduces Pt(3+) to Pt(2+) and Pt(+). NaX (Si/Al = 1.23) has a more negative framework charge than NaY (Si/Al = 2.31), so Pt(3+) can be stabilized only in NaX, whereas lower oxidation states of Pt such as Pt(+) can be stabilized in both, NaX and NaY, and neither of the paramagnetic Pt cations are stabilized in NaUSY (Si/Al = 3). The autoreduction process allows controlling the number of Pt(3+) and Pt(+) in the NaX zeolite by changing the calcination heating rate: a heating rate of 1.25 K min(-1) gives only Pt(+), but 0.5 K min(-1) gives a Pt(3+)/Pt(+) ratio close to 1. The structure of the support is also important for the synthesis of Pt species. While isolated paramagnetic Pt ions were stabilized in faujasite zeolites (NaX and NaY), a paramagnetic Pt dimer was obtained in a Linde type A zeolite (LTA, Si/Al = 1) by applying the same preparation methods. The fraction of paramagnetic Pt species which were characterized by X-band EPR spectroscopy amounts to 2-18% of the total Pt in the zeolites, the remaining Pt must be diamagnetic.  相似文献   

6.
自粘结低硅铝X型沸石的结构、吸附和N_2/O_2分离比   总被引:2,自引:0,他引:2  
用原位合成方法直接将高岭土转化为所需形状的低硅X型沸石(PLSX),经X衍射,~(29)Si,~(27)AI MAS NMR谱证实PLSX的结构硅铝比接近1,它含LSX的组成为40.40%,含4A的组成为17.92%,其余为无定形硅、铝氧化物.LSX的骨架硅铝比接近1,是骨架负电荷分配最均匀的X型沸石,293K时静态法测定和推算ISX的饱和吸附水达39.80wt%,LSX的组成为Na(96-x)K_x(Al_(96)S_i(96)O_(384))·310H_2O,是吸附量高、价廉的吸水剂.PLSX对空气中氮氧的分离系数为α(N_2/O_2)=3.15,高于用于PSA的商品5A的α(N_2/O_2)=2.33和已报道的13X的α(N_2/O_2)=2.36.PLSX也是一种极好的吸附分离剂.  相似文献   

7.
Single crystals of AxBa8-xAl14Si31 (A = Sr, Eu) were grown using a molten Al flux technique. Single-crystal X-ray diffraction confirms that AxBa8-xAl14Si31 (A = Sr, Eu) crystallize with the type I clathrate structure, and phase purity was determined with powder X-ray diffraction. Stoichiometry was determined to be Sr0.7Ba7.3Al14Si31 and Eu0.3Ba7.7Al14Si31 by electron microprobe analysis. These AxBa8-xAl14Si31 phases can be described as framework-deficient clathrate type I structures with the general formula, AxBa8-xAlySi42-3y/4[]4-1/4y. DSC measurements indicate that these phases melt congruently at 1413 and 1415 K for Sr0.7Ba7.3Al14Si31 and Eu0.3Ba7.7Al14Si31, respectively. Temperature-dependent resistivity indicates metallic behavior, and the negative Seebeck coefficient indicates transport processes dominated by electrons as carriers. Thermal conductivity of these phases remains low with Sr0.7Ba7.3Al14Si31 having the lowest values.  相似文献   

8.
Samples with the type I clathrate structure and composition Ba(8)Al(x)Si(46-x), where x = 8, 10, 12, 14, and 15, were examined by neutron powder diffraction at 35 K. The clathrate type I structure contains Ba cations as guests in a framework derived from tetrahedrally coordinated Al/Si atoms. The framework is made up of five- and six-membered rings that form dodecahedral and tetrakaidecahedral cages. The change in distances between tetrahedral sites across the series is used to develop a model for the mixed Al/Si occupancy observed in the framework. The calculated volumes of the cages that contain the Ba atoms display a linear increase with increasing Al composition. In the smaller dodecahedral cages, the Ba atomic displacement parameter is symmetry constrained to be isotropic for all compositions. In the larger tetrakaidecahedral cages, the anisotropic atomic displacement of the Ba atom depends upon the composition: the displacement is perpendicular (x = 8) and parallel (x = 15) to the six-membered ring. This difference in direction of the displacement parameter is attributed to interaction with the Al in the framework and not to the size of the cage volume as x increases from 8 to 15. The influence of the site occupation of Al in the framework on displacement of the cation at the 6d site is demonstrated.  相似文献   

9.
The adsorption of methanol on basic zeolites X and Y was investigated with both atomistic and quantum chemical methods. The Monte Carlo docking method was used to localize preferred adsorption sites within the framework. Sites were found adjacent to the interstitial alkali cations in the sites SI, SII, and SIII. We investigated the influence on adsorption behavior of all possible interstitial alkali metal cations, i.e., Li(+), Na(+), K(+), Rb(+), and Cs(+), and in the case of site SII also the influence of varying the Si/Al ratio and distribution. Clusters were cut from the periodic framework in a way that the topological character of the different sites was preserved. DFT calculations yielded geometries and energetic data, which are analyzed with respect to the nature of the cation and to the Si/Al ratio. Adsorption of the methanol molecule is influenced mainly by the identity of the alkali metal cation. Other factors, including Si/Al ratio, are of secondary importance, though there is evidence of weak hydrogen bonding between methanol hydrogen and framework. Cation positions are displaced only slightly by interaction with methanol, although somewhat more at the SIII sites than the SII. We propose that the SIII sites may be a more likely location for methanol activation, particularly in the reaction with toluene, which favors the SII site.  相似文献   

10.
Samples of the type-I clathrate Sr(8)Al(x)Si(46-x) have been prepared by direct reaction of the elements. The type-I clathrate structure (cubic space group Pm3n) which has an Al-Si framework with Sr(2+) guest atoms forms with a narrow composition range of 9.54(6) ≤ x ≤ 10.30(8). Single crystals with composition A(8)Al(10)Si(36) (A = Sr, Ba) have been synthesized. Differential scanning calorimetry (DSC) measurements provide evidence for a peritectic reaction and melting point at ~1268 and ~1421 K for Sr(8)Al(10)Si(36) and Ba(8)Al(10)Si(36), respectively. Comparison of the structures reveals a strong correlation between the 24k-24k framework sites distances and the size of the guest cation. Electronic structure calculation and bonding analysis were carried out for the ordered models with the compositions A(8)Al(6)Si(40) (6c site occupied completely by Al) and A(8)Al(16)Si(30) (16i site occupied completely with Al). Analysis of the distribution of the electron localizability indicator (ELI) confirms that the Si-Si bonds are covalent, the Al-Si bonds are polar covalent, and the guest and the framework bonds are ionic in nature. The Sr(8)Al(6)Si(40) phase has a very small band gap that is closed upon additional Al, as observed in Sr(8)Al(16)Si(30). An explanation for the absence of a semiconducting "Sr(8)Al(16)Si(30)" phase is suggested in light of these findings.  相似文献   

11.
To gain insight into the underlying mechanisms of catalyst durability for the selective catalytic reduction (SCR) of NOx with an ammonia reductant, we employed scanning transmission X‐ray microscopy (STXM) to study Cu‐exchanged zeolites with the CHA and MFI framework structures before and after simulated 135 000‐mile aging. X‐ray absorption near‐edge structure (XANES) measurements were performed at the Al K‐ and Cu L‐edges. The local environment of framework Al, the oxidation state of Cu, and geometric changes were analyzed, showing a multi‐factor‐induced catalytic deactivation. In Cu‐exchanged MFI, a transformation of CuII to CuI and CuxOy was observed. We also found a spatial correlation between extra‐framework Al and deactivated Cu species near the surface of the zeolite as well as a weak positive correlation between the amount of CuI and tri‐coordinated Al. By inspecting both Al and Cu in fresh and aged Cu‐exchanged zeolites, we conclude that the importance of the preservation of isolated CuII sites trumps that of Brønsted acid sites for NH3‐SCR activity.  相似文献   

12.
《Microporous Materials》1997,8(1-2):57-62
A comprehensive 129Xe NMR spectroscopy study on H-ZSM-5 zeolites having different aluminum contents and on cation-exchanged ZSM-5 zeolites is reported. The parent H-ZSM-5 zeolites were ion-exchanged with Group I–III metal ions ( K, Ca, Sr, Ba, Al, La) to varying degrees. The chemical shift of adsorbed 129Xe is seen to be a function of the pentasil structure of ZSM-5, of the number of free Brønsted acid sites and of the number of metal cations in the framework. Differences in the chemical shift of 129Xe are seen between cations due to their different polarizing forces against xenon. The amount of cations has also an effect on the δxe-xe term in Fraissard's equation that may be caused by changes in the diffusional characteristics of Xe atoms in the ZSM-5 framework.  相似文献   

13.
The structures of alkali‐exchanged faujasite (X–FAU, X = Li+ or Na+ ion) and ZSM‐5 (Li–ZSM‐5) zeolites and their interactions with ethylene have been investigated by means of quantum cluster and embedded cluster approaches at the B3LYP/6‐31G(d, p) level of theory. Inclusion of the Madelung potential from the zeolite framework has a significant effect on the structure and interaction energies of the adsorption complexes and leads to differentiation of different types of zeolites (ZSM‐5 and FAU) that cannot be drawn from a typical quantum cluster model, H3SiO(X)Al(OH)2OSiH3. The Li–ZSM‐5 zeolite is predicted to have a higher Lewis acidity and thus higher ethylene adsorption energy than the Li–FAU zeolites (16.4 vs. 14.4 kcal/mol), in good agreement with the known acidity trend of these two zeolites. On the other hand, the cluster models give virtually the same adsorption energies for both zeolite complexes (8.9 vs. 9.1 kcal/mol). For the larger cation‐exchanged Na–FAU complex, the adsorption energy (11.6 kcal/mol) is predicted to be lower than that of Li–FAU zeolites, which compares well with the experimental estimate of about 9.6 kcal/mol for ethylene adsorption on a less acidic Na–X zeolite. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 333–340, 2003  相似文献   

14.
The thermal transformation of Ba exchanged zeolite X to celsian has been studied by 27Al and 29Si MAS NMR spectroscopy. Evidence for the degradation of the zeolite framework is present in the 29Si NMR spectra after thermal treatment at 850 °C. Confirmation is provided by the 29Si NMR data that synthesis of celsian via the decomposition of Ba exchanged zeolite leads to a single defect phase. Clustering of the isomorphous replacement of aluminium by silicon must occur to explain the observed 29Si chemical shifts. The 27Al NMR data show distorted aluminium co-ordination sites upon the thermal transformation of Ba exchanged zeolite X. The distortions present in the amorphous matrix are greater than those present in the monoclinic and hexagonal crystalline phases of celsian.  相似文献   

15.
The siting of Cu2+ in zeolites with low exchange levels has been a subject for debate due to the lack of experimental evidence that provide directly the interaction between the Cu2+ ion and the zeolite framework. High field 27Al ENDOR provided highly resolved orientation selective ENDOR spectra from which both the 27Al hyperfine and quadrupole principal components and orientations relative to the g tensor principal axis system were determined for a dehydrated Cu2+ exchanged zeolite X with Si/Al = 1. The results show that all three Cu-Al distances in the six-member ring are equivalent, in contrast to DFT predictions using cluster models.  相似文献   

16.
合成了一个新型香豆素/Betti碱主体化合物1,并对其进行了结构表征。在乙腈/水溶液中进行主体1和碱金属、碱土金属相关离子(Li+,Na+,K+,Rb+,Cs+,Be2+,Mg2+,Ca2+,Sr2+,Ba2+)的相互作用研究时,发现仅Rb+,Ba2+离子对主体1有敏感的紫外光谱及荧光光谱响应,而其它的碱金属、碱土金属离子无敏感性光响应。紫外光谱显示,Rb+,Ba2+离子使主体1产生明显的红移(ε=4.66×102L·(mol·cm)-1,Δ=91nm),肉眼可观察到明显的由浅黄向橙红色的颜色变化,并使主体1的荧光光谱发生一定程度的猝灭。  相似文献   

17.
用高分辨~(29)Si、~(27)Al和~(23)Na NMR对直接法合成的不同硅铝比ZSM-5型分子筛局域结构作了表征,用~(29)Si和~(27)Al魔角旋转核磁共振研究了经不同温度水蒸气处理ZSM-5型分子筛的骨架脱铝,对不同条件下ZSM-5型分子筛中发生的正交-单斜晶型变化进行了系统的X射线衍射实验研究。  相似文献   

18.
This work addresses the adsorption of benzothiophene (BT), as a model heterocyclic and aromatic sulphur compound present in road fuels, over agglomerated zeolites with faujasite structure. Several adsorbents based on zeolites with FAU structure have been prepared with different Si/Al molar ratios and exchange cations and then agglomerated. The influence of the zeolite basicity has been studied, both in equilibrium and dynamic liquid phase adsorption experiments. Basicity of the adsorbent increased as the Si/Al molar ratio and the electronegativity of the exchange cation decreased. In equilibrium experiments, the affinity towards the adsorbent increased as the Si/Al molar ratio decreased, showing the highest affinity for exchanged low silica X zeolites with medium basicity (A-KLSX-02). Dynamic experiments showed that the less zeolite basicity, the higher fractional bed utilization and adsorption capacity at breakthrough time. Besides, zeolites with high basicity did not reach the equilibrium capacity due to the low diffusivity of BT into the micropores. Thermogravimetric analyses of the spent adsorbents showed a stronger BT adsorption onto the more basic zeolites. As main conclusion, adsorbents with medium basicity could present the best performance in fuel desulphurization due to their high affinity with sulphur compounds, although diffusion problems should be taken into account.  相似文献   

19.
Charaterization and Catalytic Activity of Ni2+ Exchanged X and Y Zeolites. I. TPR Studies on NiNaX and NiNaY Zeolites . The structure of TPR spectra of NiNaX and NaNiY zeolites variously exchanged is determined by the location of the cations. In case of X zeolites a peak appears with a maximum at 750–800 K (reduction on SII and SI, positions) and for higher exchange degrees an additional one at about 1000 K (reduction on SI positions). Three ranges of reduction may be separated in case of Y zeolites (reduction on SII, SI′, and SI). With increasing Si/Al ratios the maximum of the hightemperature peak is shifted to higher temperatures. The reduction at temperatures up to 800 K resulted in higher reduction degrees for X reolites while the overall reduction up to high temperatures led to higher reduction degrees for Y zeolites. The kinetic analysis by means of two different methods yielded the following activation energies: (85 ± 10) or (86 ± 2) kJ/mole, respectively, for the low-temperature peak, and (223 ± 12) or (214 ± 2) kJ/mole, respectively, for the high-temperature peak.  相似文献   

20.
Zeolites are nanoporous alumina silicates composed of silicon, aluminum, and oxygen in a framework with cations, water within pores. Their cation contents can be exchanged with monovalent or divalent ions. In the present study, the antimicrobial (antibacterial, anticandidal, and antifungal) properties of zeolite type X and A, with different Al/Si ratio, ion exchanged with Ag+, Zn2+, and Cu2+ ions were investigated individually. The study presents the synthesis and manufacture of four different zeolite types characterized by scanning electron microscopy and X-ray diffraction. The ion loading capacity of the zeolites was examined and compared with the antimicrobial characteristics against a broad range of microorganisms including bacteria, yeast, and mold. It was observed that Ag+ ion-loaded zeolites exhibited more antibacterial activity with respect to other metal ion-embedded zeolite samples. The results clearly support that various synthetic zeolites can be ion exchanged with Ag+, Zn2+, and Cu2+ ions to acquire antimicrobial properties or ion-releasing characteristics to provide prolonged or stronger activity. The current study suggested that zeolite formulations could be combined with various materials used in manufacturing medical devices, surfaces, textiles, or household items where antimicrobial properties are required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号