首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of the biphenyl derivative [S=C{(NCH2But)2C6H3‐3,4}]2 or [Cl2Si{(NCH2But)2C6H3‐3,4}]2 with C8K afforded the new bis(carbene) 1 or the first bis(silylene) 2 , respectively. The X‐ray structure of 2 is presented.  相似文献   

2.
Synthesis and Crystal Structure of the Heterobimetallic Diorganotindichloride (FcN, N)2SnCl2 (FcN, N: (η5‐C5H5)Fe{η5‐C5H3[CH(CH3)N(CH3)CH2CH2NMe2]‐2}) The heterobimetallic title compound [(FcN, N)2SnCl2] ( 1 ) was obtained by the reaction of [LiFcN, N] with SnCl4 in the molar ratio 1:1 in diethylether as a solvent. The two FcN, N ligands in 1 are bound to Sn through a C‐Sn σ‐bond; the amino N atoms of the side‐chain in FcN, N remain uncoordinated. The crystals contain monomeric molecules with a pseudo‐tetrahedral coordination at the Sn atom: Space group P21/c; Z = 4, lattice dimensions at —90 °C: a = 9.6425(2), b = 21.7974(6), c = 18.4365(4) Å, β = 100.809(2)°, R1obs· = 0.051, wR2obs· = 0.136.  相似文献   

3.
The structure of [(CF3N2NMe)Mo(CH2SiMe3)2] (in which (CF3N2NMe)2? is [(3‐CF3C6H4NCH2CH2)2NMe]2?) is approximately trigonal bipyramidal with one axial and one equatorial alkyl ligand. Heating of solutions of [(CF3N2NMe)Mo(CH2SiMe3)2] in [D6]benzene in the presence of five equivalents of 2‐butyne led to diamagnetic [(CF3N2NMe)Mo(CHSiMe3)(η2‐MeC?CMe)], whose structure is approximately square pyramidal with the alkyne occupying the axial site. Addition of one equivalent of cyclohexene sulfide to [(CF3N2NMe)Mo(CH2SiMe3)2] at room temperature produced the diamagnetic, dimeric molybdenum(IV) sulfido complex, [{(CF3N2NMe)MoS}2]. This complex is composed of two approximately trigonal bipyramidal centers, each containing one axial and one equatorial sulfur atom. Oxidation of [(CF3N2NMe)Mo(CH2SiMe3)2] with hexachloroethane resulted in formation of tetramethylsilane, HCl, and the sparingly soluble, red alkylidyne complex, [{(CF3N2NMe)Mo(CSiMe3)Cl}2]. This complex forms a dimer through bridging chlorides. The oxidation reactions of [(CF3N2NMe)Mo(CH2SiMe3)2] with 2‐butyne, cyclohexene sulfide, or C2Cl6 are all proposed to proceed by α‐hydrogen abstraction in the MoVI species to yield (initially) the Mo?CHSiMe3 species and tetramethylsilane.  相似文献   

4.
Crystal Structure and Vibrational Spectrum of (H2NPPh3)2[SnCl6]·2CH3CN Single crystals of (H2NPPh3)2[SnCl6]·2CH3CN ( 1 ) were obtained by oxidative addition of tin(II) chloride with N‐chloro‐triphenylphosphanimine in acetonitrile in the presence of water. 1 is characterized by IR and Raman spectroscopy as well as by a single crystal structure determination: Space group , Z = 2, lattice dimensions at 193 K: a = 1029.6(1), b = 1441.0(2), c = 1446.1(2) pm, α = 90.91(1)°, β = 92.21(1)°, γ = 92.98(1)°, R1 = 0.0332. 1 forms an ionic structure with two different site positions of the [SnCl6]2? ions. One of them is surrounded by four N‐hydrogen atoms of four (H2NPPh3)+ ions, four CH3CN molecules form N–H···N≡C–CH3 contacts with the other four N‐hydrogen atoms of the cations. Thus, 1 can be written as [(H2NPPh3)4(CH3CN)4(SnCl6)]2+[SnCl6]2?.  相似文献   

5.
About Selenidostannates. I Synthesis, Structure, and Properties of [Sn2Se6]4–, [Sn4Se10]4–, and [Sn3Se7]2– The selenidostannates [(C4H9)2NH2]4Sn2Se6 · H2O ( I ), [(C4H9)2NH2]4Sn4Se10 · 2 H2O ( II ) und [(C3H7)3NH]2Sn3Se7 ( III ) were prepared by hydrothermal syntheses from the elements and the amines. I crystallizes in the monoclinic spacegroup P21/n (a = 1262.9(3) pm, b = 1851.3(4) pm, c = 2305.2(4) pm, β = 104.13(3)° and Z = 4). The [Sn2Se6]4– anion consists of two edge‐sharing tetrahedra. II crystallizes in the orthorhombic spacegroup Pna21 (a = 2080.3(4) pm, b = 1308.2(3) pm, c = 2263.5(5) pm and Z = 4). The anion is formed from four SnSe4 tetrahedra which are joined by common corners to the adamantane cage [Sn4Se10]4–. III crystallizes in the orthorhombic spacegroup Pbcn (a = 1371.1(3) pm, b = 2285.4(5) pm, c = 2194.7(4) pm and Z = 8). The anion is a chain, built from edge‐sharing [Sn3Se5Se4/2]2– units, in which two corner sharing tetrahedra are connected to a trigonal bipyramid by an edge of one and a corner of the other tetrahedron. The results of the TG/DSC measurements and of temperature dependent X‐ray diffractograms reveal that I and II decompose at first by release of minor quantities of triethylammonium to compounds with layer structure and larger cell dimensions. At still higher temperature the rest of triethylammonium and H2Se is evolved, leaving SnSe2 and Se in the bulk. The former decomposes partially at the highest temperature to SnSe. In the measurements of III the complex intermediate compound was not observed. III decomposes directly to SnSe2.  相似文献   

6.
The complexes cis‐[SnCl4(H2O)2]·2H2O ( 1 ), [Sn2Cl6(OH)2(H2O)2]·4H2O ( 3 ), and [HL][SnCl5(H2O)]·2.5H2O ( 4 ) were isolated from a CH2Cl2 solution of equimolar amounts of SnCl4 and the ligand L (L=3‐acetyl‐5‐benzyl‐1‐phenyl‐4, 5‐dihydro‐1, 2, 4‐triazine‐6‐one oxime, C18H18N4O2) in the presence of moisture. 1 crystallizes in the monoclinic space group Cc with a = 2402.5(1) pm, b = 672.80(4) pm, c = 1162.93(6) pm, β = 93.787(6)° and Z = 8. 4 was found to crystallize monoclinic in the space group P21, with lattice parameters a = 967.38(5) pm, b = 1101.03(6) pm, c = 1258.11(6) pm, β = 98.826(6)° and Z = 2. The cell data for the reinvestigated structures are: [SnCl4(H2O)2]·3H2O ( 2 ): a = 1227.0(2) pm, b = 994.8(1) pm, c = 864.0(1) pm, β = 103.86(1)°, with space group C2/c and Z = 4; 3 : a = 961.54(16) pm, b = 646.29(7) pm, c = 1248.25(20) pm, β = 92.75(1)°, space group P21/c and Z = 4.  相似文献   

7.
The dinuclear molecule of p‐{[(Me3Si)2CH]Sn(Cl)2CH2SiMe2}2C6H4 is centrosymmetric and adopts an ‘S’ conformation that is stabilized by intramolecular C? H···π interactions. The tin atom exists within a distorted tetrahedron defined by a C2Cl2 donor set. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
9.
The first thermally robust Ge II −Sn II compound 1 and the structurally characterized SnII-SnII analogue 2 , which maintain their structural integrity in solution, were obtained by treating MAr2 (M=Ge, Sn; Ar=2,6-(Me2N)2C6H3) with Sn[1,8-(NR2)2C10H6] (R=CH2tBu). On the basis of structural and spectroscopic data, the M−Sn bond is regarded as the interaction of a MAr2 donor with an Sn[1,8-(NR2)2C10H6] acceptor.  相似文献   

10.
The reaction of two equivalents of LiC6H3‐2,6‐(C6H3‐2,6‐Pri2)2 with GeCl2·dioxane, SnCl2 or PbBr2 in a diethyl ether solution resulted in the isolation of the monomeric σ‐bonded diaryl tetrylene series E{C6H3‐2,6‐(C6H3‐2,6‐Pri2)2}2 (E = Ge ( 1 ), Sn ( 2 ), or Pb( 3 )). Compounds 1 ‐ 3 are highly sterically congested blue crystalline solids, which possess V‐shaped structures and wide interligand bond angles. The solid state structures of 1 ‐ 3 were determined by single‐crystal X‐ray methods while their solution structures were investigated by UV spectroscopy and in the cases of 2 and 3 , respectively, by 119Sn and 207Pb NMR spectroscopy. The series 1 ‐ 3 constitutes the most sterically crowded examples of σ‐bonded diorgano group 14 derivatives yet isolated and, in contrast to previously reported: ER2 species, the C‐E‐C angles increase with increasing atomic number.  相似文献   

11.
Barium Stannate Powders from Hydrothermal Synthesis and by Thermolysis of Barium‐Tin(IV)‐Glycolates. Synthesis and Structure of [Ba(C2H6O2)4][Sn(C2H4O2)3] and [Ba(C2H6O2)2][Sn(C2H4O2)3]·CH3OH The hydrothermal reaction as well as the microwave assisted hydrothermal reaction of SnO2·aq with barium hydroxide gives Ba[Sn(OH)6] ( 1 ) as powder with bar like particles. Compound 1 of the same morphology can also be isolated from a hydrothermal reaction of [Ba(C2H6O2)4][Sn(C2H4O2)3] ( 3 ). The reaction of SnO2·aq with Ba(OH)2·8H2O in ethylene glycol yields the glycolate [Ba(C2H6O2)4][Sn(C2H4O2)3] ( 3 ), which forms in methanol the solvate [Ba(C2H6O2)2][Sn(C2H4O2)3]·CH3OH ( 4 ). Compounds 1 , 3 and 4 react at different temperatures to BaSnO3 ( 2 ) consisting of powders with different morphologies; because of the grain size of the resulting powders compounds 3 and 4 are suitable as precursor for the fabrication of corresponding ceramics.  相似文献   

12.
An ‘S’ conformation, stabilized by intramolecular C? H···π interactions, is found in centrosymmetric p‐(Cl2PhSnCH2CH2)2C6H4. The dinuclear species features distorted tetrahedral tin centres, with the greatest distortion manifested in the C? Sn? C angle of 134.32(16) °. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
Synthesis, Structure, and Properties of Some Selenidostannates. II. [(C2H5)3NH]2Sn3Se7 · 0,25 H2O and [(C3H7)2NH2]4Sn4Se10 · 4 H2O The new selenidostannate hydrates [(C2H5)3NH]2Sn3Se7 · 0.25 H2O ( I ) and [(C3H7)2NH2]4Sn4Se10 · 4 H2O ( II ) were synthesized from an aqueous suspension of triethylammonium (tripropylammonium), tin, selenium I and in addition sulfur II at 130 °C. I crystallizes at ambient temperature in the monoclinic space group P21/n (a = 2069,3(4) pm, b = 1396,6(3) pm, c = 2342,8(5) pm, β = 114,68(3)°, Z = 8) and is characterized by two different anions, chains from edge‐sharing [Se3Se7]2– units and nets from trigonal SnSe5 bipyramids. II crystallizes at ambient temperature in the tetragonal space group I41/amd (a = 2150,0(3) pm, c = 1174,4(2) pm, Z = 4) and contains adamantane like [Sn4Se10]4–‐cages. The UV‐VIS spectra of the selenidostannates demonstrate that the absorption edges red shift as the dimensionality of the compounds is increased.  相似文献   

14.
The thermally stable silylene Si[(NCH(2)Bu(t))(2)C(6)H(4)-1,2] 1 undergoes oxidative addition reactions with the alkali metal silylamides MN(SiMe(3))(2)(M = Li, Na or K) to afford the new alkali metal amides MN(SiMe(3))[(1)SiMe(3)][M = Li (2), Na (3) or K (4)]. Reaction of two equivalents of 1 with LiN(R)(SiMe(3)) leads in a two-step process to the compound LiN[(1)R][(1)SiMe(3)][R = SiMe(2)Ph (5) or SiMe(3) (6)]. Alternatively, 1 reacts with 3 to afford NaN[(1)SiMe(3)](2) (7). The structures of 2-5 and are presented and the formation of 2-7 is discussed.  相似文献   

15.
16.
The dinuclear molecule of [(Me3SiCH2)Cl2Sn]2(CH2)3 adopts an extended conformation and features distorted tetrahedral tin centres, with the greatest distortion manifested in the C? Sn? C angles of approximately 128 °. The distortions are ascribed to the influence of intermolecular Sn···Cl interactions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
Single‐crystal X‐ray diffraction analysis of [2,6‐(Me2NCH2)2C6H3]2SnF2 reveals that only one of the two dimethylaminomethyl groups of each pincer‐type ligands [2,6‐(CH2NMe2)2C6H3]? is coordinated to the tin atom at Sn‐N distances of 2.576(2) and 2.470(2) Å, inducing chirality of the latter. The tin atom exhibits a distorted octahedral trans(C,C)cis(N,N)cis(F,F) configuration. Extensive intra‐ and intermolecular C‐H···F hydrogen bonding is observed with the latter giving rise to formation of polymeric chains.  相似文献   

18.
Reaction of Tin Chlorides with Polysulfides. Crystal Structures of (PPh4)2[SnCl2(S6)2], (PPh4)2[Sn4Cl4S5(S3)O], and (PPh4)2[SnCl6] · S8 · 2CH3CN . The reaction of PPh4[SnCl3] with Na2S4 in acetonitrile in the presence of small amounts of water yields (PPh4)2[Sn4Cl4S5(S3)O] and minor amounts of (PPh4)2[SnCl2(S6)2], PPh4Cl · 2S8 and (PPh4)2[SnCl6]. SnCl4 is partially reduced by (PPh4)2Sx, PPh4[SnCl3] and (PPh4)2[SnCl6] · S8 · 2CH3CN being produced. According to the X-ray crystal structure determination the [Sn4Cl4S5(S3)O]2?-ion consists of an O atom that is coordinated by four Sn atoms which in turn are liked with one another by five single S atoms and one S3 group. In the [SnCl2(S6)2]2?-ion the Sn atom is octahedrally coordinated by two Cl atoms in trans arrangement and by two chelating S6 groups. Octahedral [SnCl6]2? ions and S8 molecules in the crown conformation are present in (PPh4)4[SnCl6] · S8 · 2CH3CN.  相似文献   

19.
The thermally stable silylene Si[(NCH2But)2C6H4-1,2] 1 undergoes oxidative addition reactions with the lithium amides LiNRR'(R = SiMe3, R' = But; R = SiMe3, R' = C6H3Me2-2,6; R = R' = Me or R = R' = Pri) to afford the new lithium amides Li(THF)2[N(R)Si(SiMe3){(NCH2But)2C6H4-1,2}][R = But2 or R = C6H3Me2-2,6 (3a)] or the new tris(amino)functionalised silyllithiums Li(THF)x[Si{(NCH2But)2C6H4-1,2}NRR'][R = SiMe3, R' = C6H3Me2-2,6, x = 2 (3); R = R'= Me, x = 3 (4) or R = R' = Pri, x = 3 (5)]. Compounds 4 and 5 are stable at ambient temperature but compound 3 is thermally labile and converts into 3a upon heating. The pathway for the formation of 2 and 3 is discussed and the X-ray structures of 2-5 are presented.  相似文献   

20.
SnAl2OCl6, a Quaternary Oxide‐Chloride with Edge‐Sharing [Al4O2Cl10] Tetramers and [(SnCl2/2Cl5)2] Dimers Single crystals of SnAl2OCl6 were obtained from the educts SnCl2 and AlCl3 (obviously containing an oxidic impurity) in silica ampoules with the aid of the Bridgman technique. According to single‐crystal structure analysis, SnAl2OCl6 crystallizes with the monoclinic system (P21/n, Z = 4, a = 942.3(2), b = 1225.8(2), c = 948.4(3) pm, β = 96.42(2)°). Characteristic structural features are centrosymmetric tetramers [Al4O2Cl10] and [(SnCl2/2Cl5)2] dimers which are connected via common edges, finally building up a three‐dimensional structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号