首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reaction of [(Ph3P)2CuCl]2 with 4‐amino‐6‐methyl‐1,2,4‐triazine‐thione‐5‐one (AMTTO, 1 ) in methanol and further recrystallization from methanol/acetone solution gives [(C4H4N3SON(=CMe2)Cu(PPh3)2Cl] ( 2 ) as a neutral complex. [(C4H4N3SON(=CMe2)Ag(PPh3)2]NO3 ( 4 ) can be obtained in excellent yield by the reaction of [(AMTTO)2Ag]NO3 ( 3 ) with triphenylphosphane in methanol/acetone. Both complexes were characterized by infrared spectroscopy, elemental analyses as well as by X‐ray diffraction studies. Crystal data for 2 at –80 °C: space group P1 with a = 1233.8(1), b = 1389.7(1), c = 1417.1(1) pm, α = 89.36(1)°; β = 65.10(1)°, γ = 65.95(1)°, Z = 2, R1 = 0.0582 and for 4 at –80 °C: space group P1, with a = 1193.3(1), b = 1308.5(1), c = 1385.3(1) pm, α = 94.69(1)°, β = 109.14(1)°, γ = 93.42(1)°, Z = 2, R1 = 0.0716.  相似文献   

2.
The reaction of 4‐amino‐5‐methyl‐2H‐1,2,4‐triazole‐3(4H)‐thione (AMTT, 1 ) with 4‐methoxy benzaldehyde and 3‐methoxybenzaldehyde in methanol led to the iminic derivatives 4‐(4‐methoxybenzylideneamino)‐5‐methyl‐2H‐1,2,4‐triazole‐3(4H)thione ( 2 , L1) and 4‐(3‐methoxybenzylideneamino)‐5‐methyl‐2H‐1,2,4‐triazole‐3(4H)‐thione ( 3 , L2). The reaction of the latter with [(PPh3)2CuCl] in methanol solution gave the first CuI complex of 3 , [(PPh3)2CuCl(L2)] ( 4 ) and in chloroform solution the complex [(PPh3)2CuCl(L2)]·2CHCl3 ( 5 ). All compounds were characterized by infrared spectroscopy, elemental analyses as well as by X‐ray diffraction studies. Crystal data for 2 at ?80 °C: space group P21/c with a = 1351.3(3), b = 399.4(1), c = 2225.2(5) pm, β = 96.50(2)°, Z = 4, R1 = 0.0667, for 3 at ?80 °C: space group R3c with a = b = 3020.4(2), c = 708.2(1) pm, Z = 18, R1 = 0.0435, for 4 at ?80 °C: space group P21/c with a = 1427.8(1), b = 1129.0(1), c = 2622.8(2) pm, β = 97.19(1)°, Z = 4, R1 = 0.0517 and for 5 at ?80 °C: space group with a = 1280.5(1), b = 1316.1(1), c = 1731.4(1) pm, α = 78.14(1)°, β = 86.06(1)°, γ = 64.69(1)°, Z = 2, R1 = 0.0525.  相似文献   

3.
Treatment of the ligand 6‐aza‐2‐thiothymine (ATT, HL, 1 ) with palladium chloride in methanol forms the ionic complex [(HL)4Pd]Cl2·8MeOH ( 2 ), while its reaction with palladium iodide in same solvent produces the neutral complex trans‐[(HL)2PdI2]·2MeOH ( 3 ) in high yields. The reaction of 1 with Na2[PdCl4] in the presence of sodium acetate in a molar ratio of 2:1:2 and with platinum(II) chloride in presence of sodium acetate led to the dimer tetranuclear complexes [(L4Pd2)NaCl]2·8MeOH ( 4 ) and [L4Pt2Cl2]·6MeOH·H2O ( 5 ). The latter is the first PtIII complex of the ligand. All complexes were characterized by elemental analyses and IR spectroscopy and the crystal structures of 2 , 3 , 4 and 5 are determined by single‐crystal X‐ray diffraction. Crystal data for 2 at ?80 °C: triclinic space group , a = 1006.6(1), b = 1006.9(1), c = 1158.1(1) pm, α = 85.20(1)°, β = 83.84(1)°, γ = 88.91(1)°, Z = 1, R1 = 0.0278; for 3 at ?80 °C: triclinic space group , a = 490.5(1), b = 977.2(2), c = 1116.8(2) pm, α = 90.26(1)°, β = 102.33(1)°, γ = 96.08(1)°, Z = 1, R1 = 0.0394; for 4 at ?80 °C: orthorhombic space group Ccca, a = 1791.7(2), b = 1874.1(2), c = 2044.0(1) pm, Z = 4, R1 = 0.0341 and for 5 at ?80 °C: monoclinic space group P21/c, a = 1464.3(1), b = 2003.7(1), c = 1368.5(1) pm, β = 95.66(1)°, Z = 4, R1 = 0.0429.  相似文献   

4.
The reaction of 4‐amino‐5‐methyl‐2H‐1,2,4‐triazole‐3(4H)‐thione (AMTT) with 4‐methylbenzaldehyde and 4‐methoxybenzaldehyde in ethanol led to the iminic derivatives ‐4‐(4‐methylbenzylideneamino)‐5‐methyl‐2H‐1,2,4‐triazole‐3(4H)thione ( L1 ) and 4‐(4‐methoxybenzyl‐ideneamino)‐5‐methyl‐2H‐1,2,4‐triazole‐3(4H)‐thione ( L2 ). The reaction of L1 with CuCl in the presence of triphenylphosphane as co‐ligand in methanol/chloroform solution gave the CuI complex containing L1 , [Cu( L1 )(PPh3)2Cl]·0.5CH3OH·0.25CHCl3 ( 1 ). Treatment of L2 with the same metal salt in a molar ratio of 1:1 in methanol and further addition of a solution of PPh3 in chloroform led to the complex [Cu( L2 )(PPh3)2Cl]·2.5CHCl3 ( 2 ). The complexes and L1 were characterized by IR and NMR spectroscopy as well as by X‐ray diffraction studies. In both complexes, the Schiff base ligand is coordinated to the copper ion through its sulfur atom. The other coordination sites around the copper ion are occupied by two triphenylphosphane molecules and one chloride ion. Therefore, each CuI ion is in a distorted tetrahedral environment. Crystal data for L1 at ?100 °C: space group P21/n with a = 720.5(1), b = 1140.6(1), c = 1426.3(2) pm, β = 91.25(1)°, Z = 4, R1 = 0.03, for 1 at ?120 °C : space group with a = 1286.3(1), b = 1740.3(1), c = 2060.2(1) pm, α = 79.085(6), β = 83.827(5), γ = 76.688(6)°, Z = 4, R1 = 0.0649 and for 2 at ?80 °C : space group with a = 1183.7(2), b = 1370.1(2), c = 1812.1(3) pm, α = 85.69(2), β = 88.52(2), γ = 64.89(2)°, Z = 2, R1 = 0.0488.  相似文献   

5.
The reaction of 4‐amino‐6‐methyl‐1,2,4‐triazin‐thione‐5‐one (H2AMTTO, 1 ) with 4‐chlorobenzaldhyde led to the corresponding iminic compound {(4‐[(4‐chloro‐benzylidene)‐amino]‐6‐methyl‐3‐thioxo[1,2,4]‐triazin‐3,4‐dihydro(2H)‐5‐one), CAMTTO ( 2 ). Treatment of 2 with copper(I) chloride in chloroform gave the dimeric complex [{(CAMTTO)2CuCl}2]·2CHCl3 ( 3 ). Treatment of 2 with copper(I) chloride and silver(I) nitrate in the presence of the co‐ligand triphenylphophane gave the complexes [(CAMTTO)CuCl(PPh3)2] ( 4 ) and [(CAMTTO)Ag(PPh3)2]NO3·2CHCl3 ( 5 ). All compounds have been characterized by elemental analyses, 1H NMR spectroscopy, IR spectroscopy, and partly by mass spectrometry and X‐ray diffraction studies. In addition 4 and 5 have been characterized by 31P{1H} NMR spectroscopy. Crystal data for 2 at ?80 °C: monoclinic, space group P21/c, a = 1370.3(1), b = 767.8(1), c = 1268.7(1) pm, β = 107.12(1)°, Z = 4, R1 = 0.0379; for 3 at ?80 °C: monoclinic, space group P21/c, a = 1442.6(2), b = 878.8(1), c = 2558.7(3) pm, β = 95.31(1)°, Z = 2, R1 = 0.0746; for 4 at ?80 °C: triclinic, space group , a = 1287.9(1), b = 1291.7(1), c = 1359.5(1) pm, α = 90.44(1)°, β = 94.81(1)°, γ = 107.54(1)°, Z = 2, R1 = 0.0359 and for 5 at ?80 °C: triclinic, space group , a = 1060.5(1), b = 1578.2(2), c = 1689.6(2) pm, α = 87.70(1)°, β = 86.66(1)°, γ = 76.84(1)°, Z = 2, R1 = 0.0487.  相似文献   

6.
The reaction of 4‐amino‐5‐methyl‐2H‐1,2,4‐triazole‐3(4H)‐thione with AgNO3 in methanol led to the complex [Ag(ATT)2]NO3 ( 2 ). 2 was characterized by elemental analyses, IR, 1HNMR and Raman spectroscopy as well as single‐crystal X‐ray diffraction. Crystal data for 2 at ?70 °C: space group P21/n with a = 1356.7(12), b = 770.4(7), c = 1475.2(12) pm, β = 111.730(15)°, Z = 4, R1 = 0.0402.  相似文献   

7.
The reaction of 4‐amino‐1, 2, 4‐triazin‐3(2H)‐thione‐5‐one (ATTO, 1 ) with [Cu(PPh3)2]NO3 in ethanol led to the complex [Cu(PPh3)2(ATTO)]NO3 ( 2 ). 2 was characterized by elemental analyses, IR, 1H NMR and Raman spectroscopy. A single‐crystal X‐ray diffraction of compound 2 revealed that ATTO acts as a bidentate ligand via its nitrogen and sulfur atoms. Crystal data for 2 at 20 °C: space group P21/n with a = 975.7(1), b = 1533.5(2), c = 2504.2(3) pm, β = 92.25(1)°, Z = 4, R1 = 0.0632.  相似文献   

8.
The reaction of 4‐amino‐1,2,4‐Δ2‐triazoline‐5‐thione (ATT, 1 ) with AgNO3 in methanol led to the complex [Ag(ATT)2]NO3 ( 2 ). 2 was characterized by elemental analyses, 1H NMR, IR, and Raman spectroscopy as well as single‐crystal X‐ray diffraction. The molecular structure of 1 was also determined by single crystal X‐ray analysis. Crystal data for 1 at ?80 C: space group C2/c with a = 2107.4(2), b = 1425.1(1), c = 688.4(1) pm, β = 104.55(1)°, Z = 16, R1 = 0.0514, crystal data for 2 at ?80 °C: space group P21/c with a = 675.7(1), b = 1321.1(1), c = 1311.2(1) pm, β = 90.03(1)°, Z = 4, R1 = 0.0437.  相似文献   

9.
The reaction of 4‐amino‐5‐methyl‐2H‐1,2,4‐triazole‐3(4H)‐thione (AMTT, 1 ) with AgNO3 and triphenylphosphane in a molar ratio 1:1:2 in ethanol led to the dimeric complex {[Ag(AMTT)(PPh3)2]NO3}2·4EtOH ( 2 ). 2 was characterized by elemental analyses, IR, 31P NMR spectroscopy as well as single crystal X‐ray diffraction. Crystal data for 2 at ?80 °C: space group with a = 1265.5(2), b = 1300.9(2), c = 1509.5(2) pm, α = 83.77(2)°, β = 79.22(2)°, γ = 62.89(2)°, Z = 2, R1 = 0.0330.  相似文献   

10.
Preparation and Crystal Structures of Dicyanamido(triphenylphosphane)gold(I) and Nitrosodicyanomethanido(triphenylphosphane)gold(I) The coordination compounds [(Ph3P)Au{N(CN)2}] ( 1 ) and [(Ph3P)Au{ONC(CN)2}] ( 2 ) are obtained by the reaction of [Au(PPh3)]NO3 with Na[N(CN)2] or K[ONC(CN)2] in CH2Cl2. The compounds are characterized by IR spectroscopy and by crystal structure determination. 1 crystallizes triclinic in the space group P 1 with a = 930.16(4), b = 1011.89(13), c = 1118.35(16) pm, α = 115.327(10), β = 90.899(8), γ = 103.394(8)°, Z = 2. 2 crystallizes monoclinic in the space group P21/n with a = 832.59(10), b = 1139.30(16), c = 2078.9(4) pm, β = 99.84(2)°, Z = 4. The crystal structures of both compounds are built up by pairs of antiparallel oriented molecules with linear coordinated gold atoms and weak intermolecular Au–N‐interactions.  相似文献   

11.
The reaction of of 4‐amino‐5‐ethyl‐2H‐1,2,4‐triazole‐3(4H)‐thione (AETT, L ) with furfural in methanol led to the corresponding Schiff‐Base ( L1 ). The reaction of L1 with [Cu(PPh3)2]Cl in methanol gave to the neutral compound [( L1 )Cu(PPh3)2Cl] ( 1 ). By recrystallization of 1 from CH3CN the complex [( L1 )Cu(PPh3)2Cl]·CH3CN ( 1a ) was obtained. All compounds were characterized by infrared spectroscopy, elemental analyses as well as by X‐ray diffraction studies. Crystal data for L1 at ?80 °C: space group with a = 788.4(1), b = 830.3(2), c = 928.8(2) pm, α = 84.53(1)°, β = 65.93(1)°, γ = 72.02(1)°, Z = 2, R1 = 0.0323; for 1 at ?100 °C: space group with a = 1166.3(1), b = 1423.8(2), c = 1489.1(2) pm, α = 62.15(1)°, β = 72.04(1)°, γ = 88.82(1)°, Z = 2, R1 = 0.0338 and for 1a at ?100 °C: space group P21/c with a = 1294.1(1), b = 1019.8(2), c = 3316.9(4) pm, β = 94.73(1)°, Z = 4, R1 = 0.0435.  相似文献   

12.
The reactions of 4‐amino‐5‐methyl‐2H‐1,2,4‐triazole‐3(4H)‐thione (AMTT, L1 ) with 2‐thiophen carbaldehyde, salicylaldehyde and 2‐nitrobenzaldehyde in methanol led to the corresponding Schiff‐bases ( L1a‐c ). The reaction of L1 with [(PPh3)2Cu]NO3 in ethanol gave the ionic complex [(PPh3)2Cu(L1)]NO3·EtOH ( 2 ) All compounds were characterized by infrared spectroscopy, elemental analyses as well as by X‐ray diffraction studies. Crystal data for L1a at 20 °C: space group P21/n with a = 439.6(2), b = 2074.0(9), c = 1112.8(4) pm, β = 93.51(3)°, Z = 4, R1 = 0.0406, L1b at ?80 °C: space group P21/n with a = 1268.9(2), b = 739.3(1), c = 1272.5(1) pm, β = 117.97(1)°, Z = 4, R1 = 0.0361, L1c at ?80 °C: space group P21/n with a = 847.8(1), b = 1502.9(2), c = 981.5(2) pm, β = 110.34(1)°, Z = 4, R1 = 0.0376 and for 2 at ?80 °C: space group with a = 1247.8(1), b = 1270.3(1), c = 1387.5(1) pm, α = 84.32(1)°, β = 84.71(1)°, γ = 63.12(1)°, Z = 2, R1 = 0.0539.  相似文献   

13.
On Coinage Metal Mercury Chalcogenide Halides. IV Hydrothermal Synthesis and Crystal Structure of CuHgSI and CuHg2S2I The hydrothermal reaction of CuI with α‐HgS in diluted aqueous HI‐solution as solvent at 180 °C yields dark red crystals of CuHgSI. The compound crystallizes orthorhombic in the space group Pna21 with a = 718.3(1) pm, b = 834.3(2) pm and c = 698.9(1) pm and Z = 4. CuHg2S2I was obtained by the hydrothermal reaction of CuI with α‐HgS in diluted HI‐solution at 300 °C as black crystals. The compound crystallizes orthorhombic in the space group Cmc21 with a = 1261.8(3) pm, b = 722.4(1) pm and c = 693.7(1) pm and Z = 4. Both crystal structures could be explained as distorted version of the Wurtzite structure type in which two different types of anion‐lattices are built up.  相似文献   

14.
The reaction of 4‐amino‐6‐methyl‐1,2,4‐triazine‐3‐thione‐5‐one, HAMTTO, with silver (I) nitrate in methanol led under deprotonation to the polymeric compound [(AMTTO)Ag]n. The coordination polymer {[Ag(HAMTTO)]ClO4}n ( 1 ) is synthesized from the reaction of the latter polymeric compound with perchloric acid. Both compounds were characterized by elemental analysis and IR spectroscopy. Single‐crystal X‐ray diffraction studies on compound 1 showed that HAMTTO acts as a bidentate ligand and chelates the silver atom via its hydrazine nitrogen atom and its sulfur atom. Crystal data for 1 at ?90 °C: space group P21, Z = 2, a = 629.3(1), b = 748.7(1), c = 1071.7(1) pm, β = 98.28(1)°, R1 = 0.0533.  相似文献   

15.
The reaction of [(AMTTO)PdCl2] ( 1 ) (AMTTO = 4-Amino-6-methyl-1,2,4-triazine-3(2H)-thione-5-one) with triphenylphosphane and sodium thiocyanate led to the air-stable crystalline complexes [(AMTTO)Pd(PPh3)Cl]Cl · MeOH ( 2 ) and [(AMTTO)Pd(SCN)2] · MeCN ( 3 ) in excellent yields. 2 and 3 have been characterized by IR and 31P NMR spectroscopy, elemental analyses as well as X-ray diffraction studies. Crystal data for 2 at –83 °C: monoclinic, space group P21/n, with a = 974.4(1), b = 988.6(1), c = 2750.7(2) pm, β = 98.16(1)°, Z = 4, R1 = 0.0241 and for 3 at –80 °C: orthorhombic, space group P212121, with a = 972.0(3), b = 1168.1(4), c = 1316.6(1) pm, Z = 4, R1 = 0.0817.  相似文献   

16.
The reaction of Te(OH)6 with Ph3SnOH in ethanol leads to the formation of trans‐[(Ph3SnO)4Te(OH)2] ( 1 ). Compound 1 crystallizes triclinic in the space group P\bar{1} with a = 996.6(2) pm, b = 1365.4(3) pm, c = 1368.2(3) pm and α = 71.15(2)°, β = 71.48(2)°, γ = 74.81(3)° (at 220 K). The molecular structure of 1 consists of a tellurium atom, which is coordinated nearly octahedrally by four Ph3SnO units and two hydroxyl groups that are trans to each other. The Te–O bond lengths are in the range of 190.5(2) and 193.7(2) pm. Treatment of 1 with methanol under reflux yields trans‐[(Ph3SnO)2Te(OMe)4] ( 2 ). Compound 2 crystallizes triclinic in the space group P\bar{1} with a = 1012.8(1) pm, b = 1422.4(2) pm, c = 1618.1(2) pm, and α = 100.44(1)°, β = 107.92(1)°, γ = 110.66(1)° (at 220 K). 2 forms centrosymmetric molecules in which the tellurium atom is surrounded nearly octahedrally by four methoxy groups and two trans arranged Ph3SnO units. The Te–O bond lengths of 187.9(3)–194.5(3) pm are similar to those observed in 1 .  相似文献   

17.
By reaction of GeI4, [N(nBu)4]I as iodide donor, and [NMe(nBu)3][N(Tf)2] as ionic liquid, reddish‐black, plate‐like shaped crystals are obtained. X‐ray diffraction analysis of single crystals resulted in the compositions ;alpha;‐[NMe(nBu)3](GeI4)I (Pbca; a = 1495.4(3) pm; b = 1940.6(4) pm; c = 3643.2(7) pm; Z = 16) and β‐[NMe(nBu)3](GeI4)I (Pn; a = 1141.5(2) pm; b = 953.6(2) pm; c = 1208.9(2) pm; β = 100.8(1)°; Z = 2). Depending on the reaction temperature, the one or other compound is formed selectively. In addition, the reaction of GeI4 and [N(nBu)4]I, using [ImMe(nBu)][BF4] (Im = imidazole) as ionic liquid, resulted in the crystallization of [ImMe(nBu)][N(nBu)4](GeI4)3I2 (P21/c; a = 1641.2(3) pm; b = 1903.0(4) pm; c = 1867.7(4) pm; β = 92.0(1)°; Z = 4). The anionic network of all three compounds is established by molecular germanium(IV)iodide, which is bridged by iodide anions. The different connectivity of (GeI4–I) networks is attributed to the flexibility of I regarding its coordination and bond length. Here, a [3+1]‐, 4‐ and 5‐fold coordination is first observed in the pseudo‐ternary system M/Ge/I (M: cation).  相似文献   

18.
The reaction of 3, 4‐dihydro‐6‐methyl‐3‐thioxo‐1, 2, 4‐triazin‐5(2H)‐one (6‐aza‐2‐thiothymine, AAT, 1 ) with copper(I) chloride in presence of hydrochloric acid in methanol gives the complex [{CuCl2(H2O)2(AT)}2] · 2H2O, 2 , AT = 6‐azathymine) in excellent yield. 2 was characterized by IR spectroscopy and elemental analyses as well as mass spectrometry. Also single‐crystal X‐ray diffraction studies on compound 2 revealed that AT acts as a monodentate ligand in the centrosymmetric binuclear complex via its oxygen atom. Crystal data for 2 at —80 °C: space group P21/c with a = 550.1(1), b = 2712.5(1), c = 729.7(1) pm, β = 95.99(1)°, Z = 2, R1 = 0.0213.  相似文献   

19.
Complexes of Monovalent Dibenzo‐18‐crown‐6 Cations with Triiodide as Anions The new polyiodides [NH4(db18c6)]2(I3)2 ( 1 ), [NH4(db18c6)](db18c6)I3 ( 2 ), [Na1/2(db18c6)H2O]2I3 ( 3 ), [Rb(db18c6)]I3 ( 4 ), [Rb(db18c6)]2(I3)2 ( 5 ), [Cs(db18c6)]I3 ( 6 ), and [Cs2(db18c6)3][Cs(db18c6)3/2](I3)3 ( 7 ) were obtained from reactions of dibenzo‐18‐crown‐6 (db18c6) and iodine with NH4I, NaI, RbI, and CsI. Their crystal structures were determined by single‐crystal X‐ray diffraction. ( 1 ) M = NH4, ( 5 ) M = Rb: monoclinic, P21/n, a = 1409,67(8), b = 2211,63(14), c = 1627,16(10) pm, β = 101,030(5)°, Z = 4 (crystal data for M = NH4); ( 2 ): monoclinic, Pn, a = 1345,26(14), b = 773,82(4), c = 2095,10(20) pm, β = 94,439(8)°, Z = 2; ( 3 ): orthorhombic, Pnaa, a = 931,59(13), b = 2213,3(5), c = 2223,9(4) pm, Z = 4; ( 4 ): monoclinic, P21/n, a = 999,50(6), b = 1711,33(10), c = 1517,45(9) pm, β = 99,021(5)°, Z = 4; ( 6 ): triclinic, , a = 705,16(9), b = 1137,93(14), c = 1678,90(20) pm, α = 73,719(10), β = 79,782(10), γ = 83,669(10)°, Z = 2; ( 7 ): triclinic, , a = 1519,25(6), b = 1702,49(7), c = 2136,41(9) pm, α = 102,641(3), β = 101,989(3), γ = 91,911(3)°, Z = 2. 1 : 1 cations centered by M, [M(db18c6)]+, are found in the structures of ( 1 – 6 ). In contrast, the triple decker cation found in ( 7 ) is less common. The crystal structures are completed by mostly asymmetrically linear I3? anions.  相似文献   

20.
A new (β‐)modification of the mercury molybdate Hg2Mo2O7, thermodynamically stable at temperatures above 390 ± 10 °C, was prepared by solid state reaction of HgO with MoO2 in sealed silica tubes. Its crystal structure, determined from single‐crystal X‐ray data, has a very pronounced subcell: space group P2/c, a = 600.9(1) pm, b = 388.7(1) pm, c = 1428.4(2) pm, β = 105.88(1)°, Z = 2, R = 0.052 for 797 structure factors and 52 variable parameters. In the superstructure of this high‐temperature β‐modification the a and the b axes of the subcell are doubled: C2/c, a = 1201.9(2) pm, b = 777.3(1) pm, c = 1428.4(2) pm, β = 105.88(1)°, Z = 8, R = 0.040 for 1490 F values and 110 variables. Like the previously reported low‐temperature α‐modification, the β‐modification consists of two‐dimensionally infinite sheets of edge‐ and corner‐sharing MoO6 octahedra. These sheets are linked by Hg2 pairs. Thus, the structures of the two modifications (α and β) differ essentially only in the orientation of the Hg2 pairs, which are located between the sheets of the MoO6 octahedra. The superstructure of the β‐modification differs from the subcell‐structure by the puckering of the sheets of MoO6 octahedra. A hypothetical displacive phase transition between the subcell‐structure (corresponding to the potential high‐temperature structure) and the superstructure of β‐Hg2Mo2O7 is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号