首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The exact conditions on valid probe states for weak measurements are derived. It is demonstrated that weak measurements can be performed with any probe state with vanishing probability current density. This condition is found both for weak measurements of noncommuting observables and for c-number observables. In addition, the interaction between object and probe must be sufficiently weak. Strange weak values can be observed also with mixed probe states, but not for c-number observables.  相似文献   

2.
3.
We have performed the measurement of the site-specific phonon densities of states (PDOS) discerned using electronic states. As far as we know, no general method could give the site-specific PDOS, although oscillating properties of the individual atoms in nonequivalent positions are not necessarily equivalent. However, the combination of the energy and time domain measurements of the nuclear resonant scattering of synchrotron radiation allows the identification of site-specific PDOS. We measured the site-specific PDOS of iron atoms in magnetite, which is a mixed valent compound, and the difference between partial phonon densities of the iron sites was clearly observed.  相似文献   

4.
5.
6.
7.
H. van Aggelen 《Molecular physics》2015,113(13-14):2018-2025
Time-dependent density functional theory (TD-DFT) is commonly used as the foundation to obtain neutral excited states and transition weights in DFT, but does not allow direct access to density of states and single-particle energies, i.e. ionisation energies and electron affinities. Here we show that by extending TD-DFT to a superfluid formulation, which involves operators that break particle-number symmetry, we can obtain the density of states and single-particle energies from the poles of an appropriate superfluid response function. The standard Kohn– Sham eigenvalues emerge as the adiabatic limit of the superfluid response under the assumption that the exchange– correlation functional has no dependence on the superfluid density. The Kohn– Sham eigenvalues can thus be interpreted as approximations to the ionisation energies and electron affinities. Beyond this approximation, the formalism provides an incentive for creating a new class of density functionals specifically targeted at accurate single-particle eigenvalues and bandgaps.  相似文献   

8.
A Bayesian framework is developed to reconstruct the density of states from multiple canonical simulations. The framework encompasses the histogram reweighting method of Ferrenberg and Swendsen. The new approach applies to nonparametric as well as parametric models and does not require simulation data to be discretized. It offers a means to assess the precision of the reconstructed density of states and of derived thermodynamic quantities.  相似文献   

9.
Temperature weighted two-phonon density of states for MnO is reported. Lattice dynamics of MnO used in computation is based on the deformation dipole model.  相似文献   

10.
P Nayak 《Pramana》1989,32(3):269-275
We have generalized the coherent potential approximation (CPA) of Tripathi and Behera to the case of ann-component alloy. It is seen that then-component CPA density of states reproduces the binary, ternary quartenary alloys etc when the appropriate limits are adopted.  相似文献   

11.
The photonic density of states (PDOS), like its electronic counterpart, is one of the key physical quantities governing a variety of phenomena and hence PDOS manipulation is the route to new photonic devices. The PDOS is conventionally altered by exploiting the resonance within a device such as a microcavity or a bandgap structure like a photonic crystal. Here we show that nanostructured metamaterials with hyperbolic dispersion can dramatically enhance the photonic density of states paving the way for metamaterial-based PDOS engineering.  相似文献   

12.
We explain by quantal density functional theory the physics of mapping from any bound nondegenerate excited state of Schr?dinger theory to an S system of noninteracting fermions with equivalent density and energy. The S system may be in a ground or excited state. In either case, the highest occupied eigenvalue is the negative of the ionization potential. We demonstrate this physics with examples. The theory further provides a new framework for calculations of atomic excited states including multiplet structure.  相似文献   

13.
We present an exact calculation of the finite temperature partition function for the hadronic states corresponding to a Penrose-Güven limit of the Maldacena-Nù?ez embedding of the N=1 super Yang-Mills (SYM) into string theory. It is established that the theory exhibits a Hagedorn density of states. We propose a semiclassical string approximation to the finite temperature partition function for confining gauge theories admitting a supergravity dual, by performing an expansion around classical solutions characterized by temporal windings. This semiclassical approximation reveals a hadronic energy density of states of a Hagedorn type, with the coefficient determined by the gauge theory string tension as expected for confining theories. We argue that our proposal captures primarily information about states of pure N=1 SYM theory, given that this semiclassical approximation does not entail a projection onto states of large U(1) charge.  相似文献   

14.
For lattice invariant quasi free states on the Fermi lattice system the mean entropy is explicitly calculated; it is proved that it is a norm continuous functional on this set of states which is not weakly continuous.Navorsingsstagiair van het Belgisch N.F.W.O.  相似文献   

15.
An interesting property of modulated semiconductor materials is that their reflectance and absorption spectra can nearly be chosen at will by adjusting the layer geometry. Introducing the concept of phonon-polariton density of states, this paper is aimed at investigating spectral properties of multilayered materials in the infra-red frequency range. Using powerful analytical methods, we will successively consider the cases of infinite and semi-infinite superlattices. The local density of states of polariton modes is obtained using a Green's function technique. Complete information is then available on allowed radiative and non-radiative electromagnetic excitations, (as a function of frequency and wavelength), at any depth in the stratified material. This approach will depict the essential role played by the surface, which changes significantly the polariton density of states as compared to ideal unbounded materials. In multilayered materials, in addition to the effect induced by the surface, one can similarly investigate the influence of the internal interfaces on the polariton local density of states and, from these, on the optical properties of those systems. Electromagnetic eigenmodes arising from the accumulation of interfaces are crucial to assess the spectral properties involving TM-polarized radiations. Effects related to the TE-polarized radiations are explained from the macroscopic anisotropy due to the alternate growth of different semiconductors. These results will be used to discuss reflectance experiments and simulated ATR spectra.  相似文献   

16.
The density of states function for continuum states in the presence of a nuclear Coulomb field is derived by the Sommerfeld-Weyl eigendifferential method.  相似文献   

17.
18.
19.
20.
We study the computational difficulty of computing the ground state degeneracy and the density of states for local Hamiltonians. We show that the difficulty of both problems is exactly captured by a class which we call #BQP, which is the counting version of the quantum complexity class quantum Merlin Arthur. We show that #BQP is not harder than its classical counting counterpart #P, which in turn implies that computing the ground state degeneracy or the density of states for classical Hamiltonians is just as hard as it is for quantum Hamiltonians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号