首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
In this article, we review the recent progress in growth, structural characterizations, magnetic properties, and related spintronic devices of tetragonal MnxGa and MnxA1 thin films with perpendicular magnetic anisotropy. First, we present a brief introduction to the demands for perpendicularly magnetized materials in spintronics, magnetic recording, and perma- nent magnets applications, and the most promising candidates of tetragonal MnxGa and MnxA1 with strong perpendicular magnetic anisotropy. Then, we focus on the recent progress of perpendicularly magnetized MnxGa and MnxA1 respec- tively, including their lattice structures, bulk synthesis, epitaxial growth, structural characterizations, magnetic and other spin-dependent properties, and spintronic devices like magnetic tunneling junctions, spin valves, and spin injectors into semiconductors. Finally, we give a summary and a perspective of these perpendicularly magnetized Mn-based binary alloy films for future applications.  相似文献   

2.
A nonlinear model of spin-wave excitation using a point contact in a thin ferromagnetic film is introduced. Large-amplitude magnetic solitary waves are computed, which help explain recent spin-torque experiments. Numerical simulations of the fully nonlinear model predict excitation frequencies in excess of 0.2 THz for contact diameters smaller than 6 nm. Simulations also predict a saturation and redshift of the frequency at currents large enough to invert the magnetization under the point contact. The theory is approximated by a cubic complex Ginzburg-Landau type equation. The mode's nonlinear frequency shift is found by use of perturbation techniques, whose results agree with those of direct numerical simulations.  相似文献   

3.
聂帅华  朱礼军  潘东  鲁军  赵建华 《物理学报》2013,62(17):178103-178103
系统地研究了利用分子束外延方法在GaAs(001) 衬底上外延生长的MnAlx薄膜的结构和垂直易磁化特性随组分及生长温度的依赖关系. 磁性测试表明, 可在较大组分范围内 (0.4≤x≤1.2) 获得大矫顽力的垂直易磁化MnAlx薄膜, 然而同步辐射X射线衍射和磁性测试发现当x≤0.6时MnAl薄膜出现较多的软磁相, 当x >0.9时, MnAl薄膜晶体质量和化学有序度逐渐降低, 组分为MnAl0.9时制备的薄膜有最好的[001]取向. 随着生长温度的增加, MnAl0.9薄膜的有序度、垂直磁各向异性常数、矫顽力和剩磁比均增加, 350℃时制备的MnAl0.9薄膜化学有序度高达0.9, 其磁化强度、剩磁比、矫顽力和垂直磁各向异性常数分别为265emu/cm3、93.3%、8.3kOe (1 Oe=79.5775A/m)和7.74Merg/cm3 (1 erg=10-7J). 不含贵金属及稀土元素、良好的垂直易磁化性质、 与半导体材料结构良好的兼容性以及磁性能随不同生长条件的可调控 性使得MnAl薄膜有潜力应用于多种自旋电子学器件. 关键词: 分子束外延 大矫顽力材料 磁各向异性  相似文献   

4.
We investigate the superconducting transition temperature Tc of epitaxial ferromagnet/superconductor/ferromagnet (FSF) triple layers with perpendicular magnetic anisotropy. Due to the different coercive fields of the top and bottom F layers (F=[Co/Pt] multilayer) different magnetized states can be achieved: a fully magnetized state where the F layer magnetizations are parallel oriented, a state DM where one layer is demagnetized, and a state DD where both layers are demagnetized. Tc is maximum in the fully magnetized state and decreases consecutively from the DM to the DD state due to the different contributions from magnetic stray fields originating from the domain walls present in the demagnetized layers. The role of the proximity effect and the effect of the stray fields on the superconductivity in the S layer can be distinguished by analyzing the temperature dependence of the upper critical field and by comparison with data taken on an FISIF multilayer where I is an insulating SiO2 barrier. Hence, we demonstrate that Tc can be manipulated by the intentional creation of different stray-field configurations in the F layers. PACS 68.55.JK; 74.45.+c; 74.78.Db; 74.78.Fk; 75.47.-m  相似文献   

5.
《中国物理 B》2021,30(7):77503-077503
A numerical study reports that the zero-field skyrmions in Fe Ge thin films are stabilized when a Fe Ge layer is exchange coupled to a single-domain Ni layer, which has been magnetized perpendicularly. Due to the small thickness, an easy-plane anisotropy in the Fe Ge layer is taken into account, and the skyrmion-crystal state is favored to appear for low anisotropies and intermediate Fe Ge/Ni interlayer exchange couplings, and finally transformed from a labyrinth-like and into an out-ofplane uniform state for the large couplings or into an in-plane state for the high anisotropies. Furthermore, the maximum skyrmion charge number is bigger for the periodic and fixed boundary conditions with an out-of-plane magnetization;on the contrary, the Bloch-type skyrmions can be frozen and stabilized for the larger couplings on the fixed boundary with an in-plane magnetization, similar to the experimental results of the magnetic-field-induced skyrmions. Finally, the skyrmion charge number and diameter both decrease if the nonmagnetic defects exist, and the skyrmion centers are prone to being captured by defect sites. This work evidences that the ensembles of homochiral skyrmions stabilized in the multilayers fabricated by well-established technologies present a roadmap to design new classes of the materials that can host skyrmions.  相似文献   

6.
7.
The dynamics of vertical Bloch lines in variable external magnetic fields is examined with allowance for the magnetostatic noninterchangeability of the spectrum of the domain wall. The drift velocity of the translational motion of vertical Bloch lines is calculated and is found to be nonzero in second order in the weak oscillating field. Zh. éksp. Teor. Fiz. 112, 2169–2177 (December 1997)  相似文献   

8.
《Current Applied Physics》2015,15(8):902-905
The planar Hall effect (PHE) in W/CoFeB/MgO structure with perpendicular magnetic anisotropy was investigated as a function of CoFeB thickness (tCoFeB). The PHE is measured by sweeping the in-plane magnetic field at various azimuthal angles as well as by rotating strong magnetic field which is enough to saturate the magnetization. We observed a huge PHE in the W/CoFeB/MgO sample, which is even larger than anomalous Hall effect (AHE). This is distinct from the results in Ta/CoFeB/MgO samples showing a much smaller PHE than AHE. Since the PHE is insensitive to the tCoFeB while the AHE is proportional to the tCoFeB, the unprecedented PHE can be attributed to the W layer with a large spin-orbit coupling.  相似文献   

9.
It is shown that the pair breaking parameter of the Maki-Thompson contributions to the fluctuation conductivity above the superconducting transition temperature has the same thickness dependence as the transition temperature depression in very thin amorphous Be-Al films. Both can be ascribed to an extremely thin surface sheath with suppressed superconductivity.Supported by the Swedish Natural Science Research Board.  相似文献   

10.
11.
The nanodynamics of ferroelectric ultrathin films made of PbTi(0.6)Zr(0.4)TiO(3) alloy is explored via the use of a first-principles-based technique. Our atomistic simulations predict that the nanostripe domains which constitute the ground state of ferroelectric ultrathin films under most electric boundary conditions oscillate under a driving ac field. Furthermore, we find that the atomically thin wall, or nanowall, that separates the nanodomains with different polarization directions behaves as an elastic object and has a mass associated with it. The nanowall mass is size-dependent and gives rise to a unique size-driven transition from resonance to relaxational dynamics in ultrathin films. A general theory of nanodynamics in such films is developed and used to explain all computational findings. In addition, we find an unusual dynamical coupling between nanodomains and mechanical deformations that could potentially be used in ultrasensitive electromechanical nanosensors.  相似文献   

12.
The effect of ultrathin Fe underlayer on the strong in-plane magnetization of FePt magnetic thin film was investigated. This FePt thin film could be attained using the ultrathin Fe underlayer with 1 nm thickness. The in-plane coercivity of FePt film with 20 nm thickness grown on ultrathin Fe underlayer was high up to 7400 Oe. However, its out-of-plane coercivity was extremely low to 350 Oe compared to those of FePt thin films in other conventional studies. This result indicates that FePt thin film was strongly in-plane magnetized by ultrathin Fe underlayer. The strong ordering phase transformation kinetics and the high texturing to in-plane direction of the FePt thin film by ultrathin Fe underlayer were confirmed by Kinetics Monte Carlo (KMC) simulation and XRD measurement result, respectively. It is also supposed that they are associated with the reduction of an interface free energy between the film and the substrate with an introduction of ultrathin underlayer.  相似文献   

13.
14.
A formula for the magnetic field arising in a periodically ordered array of ferromagnetic wires, whose magnetization is saturated in a perpendicularly applied field, is derived. Thereby it is assumed that the stray fields do not affect the magnetization of the wires. It is shown that for an arbitrary infinite lattice of wires the exact solution of the magnetostatic equations is given by the Weierstrass p-function and how this function can be used to approximate the field in a finite array of wires. In view of applications to HGMS an expression for the magnetic force acting on a small weakly magnetic particle in a ferromagnetic matrix is derived, which is well-suited for numerical calculations.  相似文献   

15.
Ultrathin conductive carbon layers (UCCLs) were created by spin coating resists and subsequently converting them to conductive films by pyrolysis. Homogeneous layers as thin as 3 nm with nearly atomically smooth surfaces could be obtained. Layer characterization was carried out with the help of atomic force microscopy, profilometry, four-point probe measurements, Raman spectroscopy and ultraviolet-visible spectroscopy. The Raman spectra and high-resolution transmission electron microscopy image indicated that a glassy carbon like material was obtained after pyrolysis. The electrical properties of the UCCL could be controlled over a wide range by varying the pyrolysis temperature. Variation in transmittance with conductivity was investigated for applications as transparent conducting films. It was observed that the layers are continuous down to a thickness below 10 nm, with conductivities of 1.6 × 104 S/m, matching the best values observed for pyrolyzed carbon films. Further, the chemical stability of the films and their utilization as transparent electrochemical electrodes has been investigated using cyclic voltammetry and electrochemical impedance spectroscopy.  相似文献   

16.
17.
The magnetic properties of Au/Ni/Si(100) films with Ni thicknesses of 8–200 Å are studied at T=77 K using a scanning magnetic microscope with a thin-film high-temperature dc SQUID. It is found that the Ni films, with an area of 0.6×0.6 mm, which are thicker than 26 Å have a single-domain structure with the magnetic moment oriented in the plane of the film and a saturation magnetization close to 0.17 MA/m. For films less than 26 Å thick, the magnetization of the film is found to drop sharply.  相似文献   

18.
19.
Intrinsic stress of ultrathin epitaxial films   总被引:3,自引:0,他引:3  
The present article focuses on the stress developing during the deposition of ultrathin epitaxial films in the thickness range of a few atomic layers. The studied systems exhibit the three well-known modes of film growth: Stranski–Krastanow mode [Ge/Si(001), Ge/Si(111), Ag/Si(111)], Frank–Van der Merwe mode [Fe/MgO(001)] and Volmer–Weber mode [Ag/mica(001), Cu/mica(001)]. The experimental results demonstrate the important role of the misfit strain as well as the contribution of surface stress effects as mechanisms for the stress in single atomic layers. Received: 26 April 1999 / Accepted: 25 June 1999 / Published online: 6 October 1999  相似文献   

20.
Ultrathin metallic films like CoFe, Ta, Cu, Cr, and NiFe are widely used in magnetic devices such as magnetic random access memory (MRAM) and magnetic recording heads. Dewetting corrosions were often observed after O2 plasma ashing in MRAM fabrications. The surface stability of these films was then examined. The results show that dewetting takes place when CoFe or Cu films are exposed to air after an O2 plasma process. In contrast to the dewetting reported so far in organic or metallic liquid films on solid substrates, the observed dewetting does not occur in a liquid state but in a solid state. Several in situ and ex situ process methods were examined to control the dewetting. It is found that after ashing, the immediate immersion of wafer into acetone and ultrasonic cleaning some minutes after opening chamber can greatly suppress the occurrence of dewettings. Process examinations show that the heating is unimportant for the formation of the dewetting, while moisture in air may play an important role in the formation of the dewetting, acting as a necessary catalyst. Several dewetting patterns were observed, and the pattern shape depends not only on the thickness of the film, but also on the plasma parameters. Possible mechanisms responsible for the formation of these patterns are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号