首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The penny-shaped cracks periodically distributed in infinite elastic body are studied. The problem is approximately simplified to that of a single crack embedded in finite length cylinder and the stress intensity factor is obtained by solving a Fredholm integral equation. Numerical results are given and the effects of crack interaction on the stress intensity factor are discussed. The project suppoted by National Natural Science Foundation of China  相似文献   

2.
Stress intensity factors are determined for glass-fiber reinforced plastics with an infinite row of parallel cracks at low temperatures under tension. A state of generalized plane strain is assumed. The thermal and mechanical properties as functions of temperature are obtained from the experimental data. Fourier transforms are used to reduce the problem to the solution of a pair of dual integral equations. The solution of the dual integral equations is then expressed in terms of a Fredholm integral equation of the second kind. Numerical calculations are carried out, and the stress intensity factors at different temperatures are shown graphically.  相似文献   

3.
The problem of estimating the bending stress distribution in the neighborhood of a crack located on a single line in an orthotropic elastic plate of constant thickness subjected to out-of-plane concentrated moments is examined. Using classical plate theory and integral transform techniques, the general formulae for the bending moment and twisting moment in an elastic plate containing cracks located on a single line are derived. The solution is obtained in a closed form for the case in which there is a single crack in an infinite plate subjected to symmetric concentrated moments.  相似文献   

4.
Stress analysis for an infinite stripcracks were assumed in a horizontal position,weakened by periodic cracks is studied. The and the strip was applied by tension “p“ in y-direction. The boundary value problem can be reduced into a complex mixed one. It is found that the EEVM ( eigenfunction expansion variational method) is efficient to solve the problem. The stress intensity factor at the crack tip and the T-stress were evaluated. From the deformation response under tension the cracked strip can be equivalent to an orthotropic strip without cracks. The elastic properties in the equivalent orthotropic strip were also investigated. Finally, numerical examples and results were given.  相似文献   

5.
Based on the Kachanov method and the alternating iteration technique, a new method is proposed to deal with the problem of the strongly interacted multiple cracks in an infinite plate. Unlike the Kachanov method which neglects the interaction of the tractions of the non-uniform components, the tractions of the non-uniform components on the surfaces of cracks are considered through the alternating technique. The accuracy and efficiency of present method are validated by comparing the results of two collinear and two parallel overlapped open the cracks obtained by the present method with those of the exact solutions, the results of the Kachanov method and the alternating iteration technique. Applications of present method in solving sliding close crack problems and evaluating the plastic zones demonstrate the versatility of present method.  相似文献   

6.
The transient thermal stress crack problem for two bonded dissimilar materials subjected to a convective cooling on the surface containing an edge crack perpendicular to the interface is considered. The problem is solved using the principle of superposition and the uncoupled quasi-static thermoelasticity. The crack problem is formulated by applying the transient thermal stresses obtained from the uncracked medium with opposite sign on the crack surfaces to be the only external loads. Fourier integral transform is used to solve the perturbation problem resulting in a singular integral equation of Cauchy type in which the derivative of the crack surface displacement is the unknown function. The numerical results of the stress intensity factors are calculated for both the edge crack and the crack terminating at the interface using two different composite materials and illustrated as a function of time, crack length, coefficient of heat transfer, and the thickness ratio.  相似文献   

7.
The formation mechanism of the residualstrength plateau of ceramics subjected to thermal shockis addressed.A set of thermal shock experimentsof 99Al2O3 are conducted,where the thin specimensof 1 mm × 10 mm × 50 mm exhibit parallel through edgecracks,and thus permit quantitative measurements of thecrack patterns.The cracks evolve with the severity of thermal shock.It is found that there is a correlation between thelength and density of the thermal shock cracks.The increaseof crack length weakens the residual strength,whereas theincrease of crack density improves it.In a considerably widetemperature range,the two contrary effects just counteracteach other;consequently a plateau appears in the variationcurve of the residual strength.A comparison between thenumerical and experimental results of the residual strengthis made,and they are found in good agreement.This work ishelpful to a deep understanding of the thermal shock failureof ceramics.  相似文献   

8.
The thermal fracture of a bimaterial consisting of a homogeneous material and a functionally graded material (FGM) with a system of internal cracks and an interface crack is investigated. The bimaterial is subjected to a heat flux. The thermal properties of FGM are assumed to be continues functions of the thickness coordinate, while the elastic properties are constants. The method of the solution is based on the singular integral equations. For a special case where the interface crack is much larger than the internal cracks in the FGM the asymptotic analytical solution of the problem is obtained as series in a small parameter (the ratio between sizes of the internal and interface crack) and the thermal stress intensity factors (TSIFs) are derived as functions of geometry of the problem and material characteristics. A parametric analysis of the effects of the location and orientation of the cracks and of the inhomogeneity parameter of FGM’s thermal conductivity on the TSIFs is performed. The results are applicable to such kinds FGMs as ceramic/ceramic FGMs, e.g., TiC/SiC, MoSi2/Al2O3 and MoSi2/SiC, and also some ceramic/metal FGMs.  相似文献   

9.
The mode I stress intensity factor for a small edge crack in an elastic half-space is found when the space is in contact with two stratified fluids of different temperatures, the boundary between the fluids oscillating sinusoidally over the solid surface. The variation in the stress intensity factor, which may lead to thermal fatigue crack growth, is examined as a function of time, crack depth, amplitude and temporal frequency of oscillation, surface heat transfer coefficient and material properties of the half-space. It is shown how this ‘boundary layer’ solution may be applied to problems involving finite geometries.  相似文献   

10.
The elastostatic antiplane problem of an infinite strip containing a Dugdale crack parallel to its boundaries is formulated in term of a singular integral equation. The resolution is done using Chebyshev polynomials. Special care is needed to take into account the presence of jump discontinuities in the loading distribution along the crack lips. The obtained result is the evolution of the crack tip with the applied loading.  相似文献   

11.
A distributed dislocation dipole technique for the analysis of multiple straight, kinked and branched cracks in an elastic half plane has been developed. The dipole density distribution is represented with a weighted Jacobi polynomial expansion where the weight function captures the asymptotic behaviour at each end of the crack. To allow for opening and sliding at crack kinking and branching the dipole density representation contains conditional extra terms which fulfills the asymptotic behaviour at each endpoint. Several test cases involving straight, kinked and branched cracks have been analysed, and the results suggest that the accuracy of the method is within 1% provided that Jacobi polynomial expansions up to at least the sixth order are used. Adopting even higher order Jacobi polynomials yields improved accuracy. The method is compared to a simplified procedure suggested in the literature where stress singularities associated with corners at kinking or branching are neglected in the representation for the dipole density distribution. The comparison suggests that both procedures work, but that the current procedure is superior, in as much as the same accuracy is reached using substantially lower order polynomial expansions.  相似文献   

12.
An asymptotic analysis is presented for a dynamic problem of a semi-infinite isotropic thermoelastic solid with a small surface breaking crack. The exterior surface of the solid is subjected to a series of short thermal pulses. The crack surface is traction free and an ideal thermal contact is assumed across the crack. The stress intensity factor is asymptotically evaluated as a function of the crack depth and time. The effect of a boundary layer associated with the diffusive term is identified. The theoretical model is supplied with numerical simulations.  相似文献   

13.
Summary  The problem of an interfacially cracked three-layered structure constructed of a piezoelectric and two orthotropic materials is analyzed using the theory of linear piezoelectricity and fracture mechanics. Anti-plane shear loading is considered, and the integral transform technique is used to determine the stress intensity factor. Numerical examples show the electro-mechanical effects of various material combinations and layer thicknesses on the stress intensity factor. Interesting results are obtained in comparison with earlier solutions for interfacially cracked piezoelectric structures. Received 29 December 2000; accepted for publication 3 May 2001  相似文献   

14.
Summary Dynamic stresses around three coplanar cracks in an infinite elastic medium are determined in the paper. Two of the cracks are equal, rectangular and symmetrically situated on either side of the centrally located rectangular crack. Time-harmonic normal traction acts on each surface of the three cracks. To solve the problem, two kind of solutions are superposed: one is a solution for a rectangular crack in an infinite elastic medium, and the other one is that for two rectangular cracks in an infinite elastic medium. The unknown coefficients in the combined solution are determined by applying the boundary conditions at the surfaces of the cracks. Finally, stress intensity factors are calculated numerically for several crack configurations. Received 14 July 1998; accepted for publication 2 December 1998  相似文献   

15.
The existing analytical solutions are extended to obtain the stress fields and the stress intensity factors (SIFs) of two unequal aligned cracks emanating from an elliptical hole in an infinite isotropic plane. A conformal mapping is proposed and combined with the complex variable method. Due to some difficulties in the calculation of the stress function, the mapping function is approximated and simplified via the applications of the series expansion. To validate the obtained solution, several examples are analyzed with the proposed method, the finite element method, etc. In addition, the effects of the lengths of the cracks and the ratio of the semi-axes of the elliptical hole (a/b) on the SIFs are studied. The results show that the present analytical solution is applicable to the SIFs for small cracks.  相似文献   

16.
This present work is concerned with planar cracks embedded in an infinite space of one-dimensional hexagonal quasicrystals. The potential theory method together with the general solutions is used to develop the framework of solving the crack problems in question. The mode I problems of three common planar cracks (a penny-shaped crack, an external circular crack and a half-infinite crack) are solved in a systematic manner. The phonon and phason elastic fundamental fields along with some important parameters in crack analysis are explicitly presented in terms of elementary functions. Several examples are given to show the applications of the present fundamental solutions. The validity of the present solutions is discussed both analytically and numerically. The derived analytical solutions of crack will not only play an important role in understanding the phonon–phason coupling behavior in quasicrystals, but also serve as benchmarks for future numerical studies and simplified analyses.  相似文献   

17.
In this paper, the theoretical solution developed by Vaughan and Wu for the stress analysis of a circular disk with a radial edge crack extending to its center is validated by photoelasticity. The photoelastic results include the fullfield isochromatics as well as measurements of the maximum shear stress at a number of test points. Additionally, the experimental stress intensity factor is extracted from the photoelastic data by Irwin's two-parameter method. Good agreement is observed when the theoretical stress field and stress intensity factor are compared with the experimental results. It is concluded that the Vaughan-Wu solution can be confidently applied in fracture mechanics analyses. The application of such a solution to the stress analysis of two-dimensional bodies with complex geometries subjected to complex loading is also noted.  相似文献   

18.
Sudden jumps in the crack tip velocity were revealed by numerical simulation (in both continuum/cohesive element and molecular dynamics approaches) and experiments for rapid shear cracking. The cracking velocity may accelerate from a sub-Rayleigh speed to the intersonic range, or from an intersonic speed to a higher one, when the reflected impact wave reloads the crack tip. On the other hand, the cracking velocity may decelerate from an intersonic speed to a lower one or recede to the sub-Rayleigh range when the fracture driving force declines. The velocity change encountered during intersonic cracking plays a different role from that in the acceleration or deceleration of a subsonic crack. A crack propagating at an intersonic speed would leave a shear wave trailing behind. When the crack decelerates or accelerates, the effect of the trailing wave will lead to a transition period from one steady-state solution of crack tip singularity to another. This investigation aims at quantifying these processes. The full field solution of an intersonic mode II crack whose speed changed suddenly from one velocity (intersonic or subsonic) to another (intersonic or subsonic) is given in closed form. The solution is facilitated via superposing a series of propagating crack problems that are loaded by dislocations to seal the unwanted crack-face sliding or by concentrated forces moving at various speeds to negate the crack-face traction. In contrast to the subsonic solution, the results in the intersonic case indicate that the elastic fields around the crack tip depend on the deceleration or acceleration history that is traced back over a long time. Singularity matching dictates the jump that may actually take place.  相似文献   

19.
Two different types of 8-node cracked quadrilateral finite element are presented for fracture applications. The first element contains a central crack and the other one includes an edge crack. The introduced elements are applicable in 2D problems. The crack is not physically modeled within the element, but instead, its effects on the stiffness matrix are taken into account by utilizing linear fracture mechanics laws. Furthermore, a simple and practical procedure is proposed for calculation of stress intensity factor (SIF) by employing proposed cracked elements. Several numerical examples are presented to evaluate the capabilities of the proposed elements and procedure.  相似文献   

20.
应用一种边界元方法来研究内部压力作用下矩形板中源于椭圆孔的分支裂纹。该边界元方法由Crouch与Starfied建立的常位移不连续单元和笔者最近提出的裂尖位移不连续单元构成。在该边界元方法的实施过程中,左、右裂尖位移不连续单元分别置于裂纹的左、右裂尖处,而常位移不连续单元则分布于除了裂尖位移不连续单元占据的位置之外的整个裂纹面及其它边界。本数值结果进一步证实这种数值方法对计算有限大板中复杂裂纹的应力强度因子的有效性,同时该数值结果可以揭示裂纹体几何对应力强度因子的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号