首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Molecular dynamics simulations were used to characterize the binding of the chiral drugs chlorthalidone and lorazepam to the molecular micelle poly-(sodium undecyl-(L)-leucine-valine). The project’s goal was to characterize the nature of chiral recognition in capillary electrophoresis separations that use molecular micelles as the chiral selector. The shapes and charge distributions of the chiral molecules investigated, their orientations within the molecular micelle chiral binding pockets, and the formation of stereoselective intermolecular hydrogen bonds with the molecular micelle were all found to play key roles in determining where and how lorazepam and chlorthalidone enantiomers interacted with the molecular micelle.  相似文献   

2.
Gagyi L  Gyéresi A  Kilár F 《Electrophoresis》2006,27(8):1510-1516
Studies on chiral resolution of beta-blocker and H1-antihistamine drugs by CZE using human serum transferrin are described. The drugs with different structures passed a pseudostationary protein zone in a coated capillary applying the partial filling method for the chiral separation. In this study we screened 15 compounds; most of them showed longer migration time, indicating an interaction with transferrin. Stereoselective interaction was observed only for five beta-blockers (celiprolol, talinolol, mepindolol, bopindolol, and oxprenolol) and for one H1-antihistamine (brompheniramine). The most important finding was that very small differences in the chemical structure of the drug resulted in significant changes in the stereoselective recognition. Resolution of mepindolol enantiomers was observed showing the essential role of one methyl group compared to pindolol, which is not resolved by transferrin. Bopindolol, also a derivative of pindolol having bigger difference in the structure, showed more experienced separation. The very slight difference between alprenolol and oxprenolol was also revealed with these methods, since only oxprenolol enantiomers, having an extra oxygen in the structure, are resolved. Determining the migration order of the eutomers and distomers (chlorpheniramine, brompheniramine) we can deduct conclusions about the role of serum proteins in the delivery of drugs within the body.  相似文献   

3.
《Analytical letters》2012,45(18):3457-3471
Abstract

Induced peak phenomenon in capillary zone electrophoresis with electrochemiluminescence detection for chiral separation of racemic phenylalanine mixture employing sulfated‐β‐cyclodextrin as chiral selector and acetonitrile as organic additive in the separation buffer was observed. Various experimental parameters influencing the intensity and the position of the induced peak were systematically investigated to find out the truth of the induced peak. Based on the experimental evidence, a reasonable mechanism involved in the formation of the induced peak was proposed. We found out the induced peak resulted from physical interactions between the components in the separation buffer and the injected sample during the electromigration process rather than chemical complexation interactions. Furthermore, suggestions to avoid the appearance of induced peak in capillary zone electrophoresis with electrochemiluminescence detection for chiral separations were presented.  相似文献   

4.
A theoretical investigation was carried out on the retention and separation of enantiomeric molecules including nonsteroidal anti-inflammatory drugs, anti-neoplastic compounds and N-derivatized amino acids by capillary electrophoresis using macrocyclic antibiotics, a new class of chiral selectors, as stationary phase. Firstly docking methods were used to study the enantiorecognition in chiral electrophoresis. The molecular dynamics simulations of the two diastereoisomer complexes were then performed in order to understand how these antibiotics recognize the enantiomers. Another approach was applied in this study to establish a quantitative structure-enantioselectivity relationship (QSER) model, able to describe the resolution of a series of chiral compounds in capillary electrophoresis using vancomycin as the resolving agent.  相似文献   

5.
Capillary electrophoresis analysis of transferrin in human serum is used to assess genetic variants after desialylation with neuraminidase and iron saturation to reduce the complexity of the transferrin pattern and thus facilitate the recognition of transferrin polymorphisms. Asialo‐transferrin forms are analyzed by capillary zone electrophoresis using assay conditions as for the monitoring of carbohydrate‐deficient transferrin or by capillary isoelectric focusing in a pH 5–8 gradient which requires immunoextraction of transferrin prior to analysis. With the carrier ampholytes used, peaks for iron saturated and iron depleted transferrin are monitored which indicates complexation of iron ions by carrier ampholytes. For BC, CD, and BD genetic variants, the expected peaks for B, C, and D forms of transferrin were detected with both methods. Monitoring of CC patterns revealed three cases, namely those producing double peaks in both methods, a double peak in capillary isoelectric focusing only and a double peak in capillary zone electrophoresis only. For all samples analyzed, data obtained by capillary isoelectric focusing could be confirmed with gel isoelectric focusing. The two capillary electrophoresis methods are shown to represent effective tools to assess unusual transferrin patterns, including genetic variants with dissimilar abundances of the two forms.  相似文献   

6.
A theoretical investigation was carried out on the retention and separation of enantiomeric molecules including nonsteroidal anti-inflammatory drugs, anti-neoplastic compounds and N-derivatized amino acids by capillary electrophoresis using macrocyclic antibiotics, a new class of chiral selectors, as stationary phase. Firstly docking methods were used to study the enantiorecognition in chiral electrophoresis. The molecular dynamics simulations of the two diastereoisomer complexes were then performed in order to understand how these antibiotics recognize the enantiomers. Another approach was applied in this study to establish a quantitative structure-enantioselectivity relationship (QSER) model, able to describe the resolution of a series of chiral compounds in capillary electrophoresis using vancomycin as the resolving agent.  相似文献   

7.
Based on the chiral separation of several basie drugs, dimetindene, tetryzoline, theodrenaline and verapamil, the liquid pre-colunm capillary electrophoresis (LPC-CE) technique was established. It was used to determine free concentrations of drug enantiomers in mixed solutions with human serum albumin (HSA). To prevent HSA entering the CE chiral separation zone, the mobility differences between HSA and drugs under a specific pH condition were employed in the LPC. Thus, the detection confusion caused by protein was totally avoided. Further study of binding constants determination and protein binding competitions was carried out. The study proves that the LPC technique could be used for complex media, particularly the matrix of protein coexisting with a variety of drugs.  相似文献   

8.
The current application of capillary electrophoresis in forensic toxicology has been critically reviewed with special focus on the areas where this technique has shown real advantages over chromatographic methods. For example, capillary electrophoresis has been most successfully applied to the chiral analysis of some drugs of forensic interest, including amphetamines and their congeners. Another typical application field of capillary electrophoresis is represented by protein analysis. Recently, special interest has been paid to carbohydrate deficient transferrin (CDT), the most important biological marker of chronic alcohol abuse. Other specific applications of capillary electrophoresis of potential forensic toxicological concern are also discussed. The review includes 62 references.  相似文献   

9.
 The development of new chiral stationary phases has been very important in the accurate analysis of drug enantiomers and their metabolites in biological samples during drug discovery and development. New chiral stationary phases have been developed usin  相似文献   

10.
Data presented in this paper demonstrate that a competitive binding, electrokinetic capillary-based immunoassay previously used for screening of urinary amphetamine and analogs cannot be employed to distinguish between the enantiomers of amphetamine and methamphetamine. However, capillary zone electrophoresis with a pH 2.5 buffer containing (2-hydroxypropyl)-beta-cyclodextrin as chiral selector is shown to permit the enantioselective analysis of urinary extracts containing methamphetamine, amphetamine, 3,4-methylenedioxymethamphetamine (Ecstasy) and other designer drugs, and methadone together with its major metabolite, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine. In that approach, enantiomer identification is based upon comparison of extracted polychrome UV absorption data and electropherograms obtained by rerunning of spiked extracts with spectra and electropherograms monitored after extraction of fortified blank urine. The suitability of the described chiral electrokinetic capillary method for drug screening and confirmation is demonstrated via analysis of unhydrolyzed quality control urines containing a variety of drugs of abuse. Furthermore, in a urine of a patient under selegiline pharmacotherapy, the presence of the R-(-)-enantiomers of methamphetamine and amphetamine could be unambiguously identified. Direct intake of an R-enantiomer or ingestion of drugs that metabolize to the R-enantiomers can be distinguished from the intake of S-(+)-enantiomers (drug abuse) or prescribed drugs that metabolize to the S-enantiomers of methamphetamine and amphetamine. The described approach is simple, reproducible, inexpensive and reliable (free of interferences of other major basic drugs that are frequently found in toxicological urines) and could thus be used for screening for and confirmation of urinary enantiomers in a routine laboratory.  相似文献   

11.
Sulfobutyl ether‐β‐cyclodextrin (SBEβCD) is utilized in preformulation and drug formulation as an excipient for solubilization of drugs with poor aqueous solubility. Approximately seven negative charges of SBEβCD play a role with respect to solubilization and complexation, but also have an influence on the ionic strength of the background electrolyte when the cyclodextrin is used in capillary electrophoresis. Mobility‐shift affinity capillary methods for investigation of the complexation of taurocholate and taurochenodeoxycholate with the negatively charged cyclodextrin derivative applying constant power and ionic strength conditions as well as constant voltage and varying ionic strength were investigated. A new approach for the correction of background electrolyte ionic strength was developed. Mobility‐shift affinity capillary electrophoresis experiments obtained at constant voltage and constant power settings were compared and found to provide binding parameters that were in good agreement upon correction. The complexation of taurochenodeoxycholate with SBEβCD was significantly stronger than the corresponding interaction involving taurocholate. The obtained stability constants for the bile salts were in the same range as those previously reported for the interaction with neutral β‐cyclodextrins derivatives, i.e. the positions of the negative charges on SBEβCD and the bile salts within the complex did not lead to significant electrostatic repulsion.  相似文献   

12.
High‐resolution capillary zone electrophoresis is used to distinguish transferrin glycoforms present in human serum, cerebrospinal fluid, and serum treated with neuraminidase and N‐glycosidase F. The obtained data are compared to mass spectrometry data from the literature. The main focus is on the analysis of the various asialo‐transferrin, monosialo‐transferrin, and disialo‐transferrin molecules found in these samples. The features of capillary zone electrophoresis and mass spectrometry are reviewed and highlighted in the context of the analysis of undersialylated and hypoglycosylated transferrin molecules. High‐resolution capillary zone electrophoresis represents an effective tool to assess the diversity of transferrin patterns whereas mass spectrometry is the method of choice to elucidate structural identification about the glycoforms. Hypoglycosylated transferrin glycoforms present in sera of alcohol abusers and normal subjects are structurally identical to those in sera of patients with a congenital disorder of glycosylation type I. Asialo‐transferrin, monosialo‐transferrin and disialo‐transferrin observed in sera of patients with a type II congenital disorder of glycosylation or a hemolytic uremic syndrome, in cerebrospinal fluid and after treatment of serum with neuraminidase are undersialylated transferrin glycoforms with two N‐glycans of varying structure. Undersialylated disialo‐transferrin is also observed in sera with high levels of trisialo‐transferrin.  相似文献   

13.
李玉娟  武广霞  欧婉露  孙欣欣  屈锋 《色谱》2017,35(3):339-343
采用毛细管区带电泳法(CZE)研究牛凝血酶(B-Thr)、凝血酶核酸适配体(Apt29)与丹参中3种活性物质(丹参素钠(SAS)、原儿茶酸(PA)、阿魏酸(FA))间的相互作用。电泳条件为:毛细管长度40 cm,紫外检测波长214 nm,分离电压15 kV,压力进样3.45 kPa,进样时间5 s。分别固定3种活性药物分子的浓度,改变B-Thr或Apt29的浓度,采用Scatchard方程和非特异性结合方程计算结合常数(K_b),表征药物分子和B-Thr或Apt29的相互作用大小。结果表明,PA与B-Thr结合能力最强,K_b为3.39×104L/mol,FA与B-Thr的K_b为1.05×104L/mol,SAS与B-Thr未表现出结合能力;在与Apt29的相互作用的研究中显示,SAS基本未与Apt29结合,FA与Apt29结合能力强于PA与Apt29的结合能力,FA、PA与Apt29的K_b分别为1.48×104L/mol和1.32×104L/mol。该研究报道了丹参活性分子与B-Thr、Apt29的相互作用结果,可为核酸适配体(蛋白质)与中药分子相互作用的探索提供新方法,适配体与中药分子相互作用亦可为中药分子的靶点发现、靶向转运提供借鉴。  相似文献   

14.
A stereoselective ion-pair nonaqueous capillary electrophoresis (NACE) method employing the partial filling technique with N-derivatized amino acids, e.g., (R)- and (S)-3,5-dinitrobenzoyl-leucine (DNB-Leu), as chiral selector for the separation of "pseudoenantiomeric" cinchona alkaloid derivatives and other structurally related basic compounds like the enantiomers of mefloquine is presented. Originating from NACE with cinchona alkaloid derivatives as chiral counterions, this method was developed by application of the reciprocity principle of chiral recognition, which was proven to be valid for stereoselective ion-pair capillary electrophoresis (CE). A variety of basic and amphoteric selectands (SAs) could be well resolved. Thereby, the separation was primarily based on stereoselective ion-pair formation of corresponding SA stereoisomers and mobility differences of free and complexed (ion-paired) SAs. Additionally, in the case of diastereomeric SAs, naturally existing mobility differences between the diastereomers played also a role, but was shown by control experiments with racemic DNB-Leu and without selector (SO) to be of minor contribution to overall separation selectivity. Due to its simplicity, speed, and good reproducibility, the established method can be utilized for fast screening of cationic as well as amphoteric chiral compounds, and therefore is a valuable tool in the development of new chiral selectors and chiral stationary phases. Small sample amounts of the SO (4-5 mg) and only analytical amounts of SAs are needed, and about 20-50 compounds per day can be tested.  相似文献   

15.
To date, a series of chiral selectors have been utilized successfully in capillary electrophoresis (CE). Among these various chiral selectors, macrocyclic antibiotics have been demonstrated to represent powerful enantioselectivity towards many chiral compounds. Differing from macrocyclic antibiotics, the use of lincosamide antibiotics as chiral selectors has not been reported previously. In our recent work, clindamycin phosphate belonging to the group of lincosamides has been first used as a chiral selector in capillary zone electrophoresis (CZE). In this paper, a micellar electrokinetic chromatography (MEKC) method has been developed for the evaluation of enantioseparation capability of this novel chiral selector towards several racemic basic drugs. As observed during the course of this work, clindamycin phosphate allowed excellent separation of the enantiomers of nefopam, citalopram, tryptophan, chlorphenamine, propranolol and metoprolol, as well as partial enantioresolution of tryptophan methyl ester and cetirizine. In this MEKC chiral separation system, different types of anionic surfactants, organic additives and background electrolytes were tested, and satisfactory enantioseparations of basic drugs above-mentioned were achieved using sodium dodecyl sulfate (SDS) as the surfactant, isopropanol as the organic additive, and phosphate as the background electrolyte. Furthermore, both migration times and enantioseparation of the analytes were influenced by several experimental parameters such as pH of the BGE, clindamycin phosphate and SDS concentrations, phosphate and isopropanol concentrations, and applied voltage. Consequently, the effects of these factors on enantioseparations of the studied basic drugs were systematically investigated in order to evaluate the stereoselectivity of clindamycin phosphate in MEKC.  相似文献   

16.
毛细管电泳在手性分离中的应用进展   总被引:5,自引:0,他引:5  
李洪霞  李伟  谷学新 《化学研究》2005,16(2):96-100
本文以手性选择剂为线索综述了近五年来毛细管区带电泳和胶束电动毛细管电色谱在手性药物拆分中的应用进展,列举了部分手性药物拆分实例.  相似文献   

17.
In capillary electrophoresis (CE), separation of enantiomers of a chiral compound can be achieved through the chiral interactions and/or complex formation between the chiral selector and the enantiomeric analytes on leaving their diastereomeric forms with different stability constants and hence different mobilities. A great number of chiral selectors have been employed in CE and among them macrocyclic antibiotics exhibited excellent enantioselective properties towards a wide number of racemic compounds. The use of azithromycin (AZM) as a chiral selector has not been reported previously. This work reports the use of AZM as a chiral selector for the enantiomeric separations of five chiral drugs and one amino acid (tryptophan) in CE. The enantioseparation is carried out using polar organic mixtures of acetonitrile (ACN), methanol (MeOH), acetic acid and triethylamine as run buffer. The influences of the chiral selector concentration, ACN/MeOH ratio, applied voltage and capillary temperature on enantioseparation are investigated. The results show that AZM is a viable chiral selector in CE for the enantioseparation of the type of chiral drugs investigated.  相似文献   

18.
以酚酞作为光谱探针 ,采用紫外 可见光谱滴定法测定了 β 环糊精 (β CD)、单 (6 氧 α 麦芽糖 ) β 环糊精 (6 G2 β CD )和单 [2 氧 (2 羟丙基 ) ] β 环糊精 (2 HP β CD )在 2 5℃时 ,pH =10 5缓冲液中(0 0 2 5mol/L)与几种脂肪族手性客体分子所形成超分子配合物的稳定常数 .结果表明 ,多种弱相互作用力协同作用于环糊精的配位过程 ,主 客体间的尺寸匹配决定所形成配合物的稳定性 .环糊精衍生物的取代基影响主体的配位能力 ,对于尺寸较小的客体分子配位能力的大小一般为 2 HP β CD >β CD >6 G2 β CD .另一方面 ,3种环糊精主体化合物对一些脂肪族客体分子也表现出一定的手性识别能力 ,对 (+ ) 异构体给出相对较强的键合能力 ,其中 ,2 HP β CD对 (+ ) /(- ) 樟脑的配位选择性为 1 2 5 .  相似文献   

19.
Enantiomer separations of underivatised amino acids were carried out by using ligand exchange capillary electrophoresis (LECE). Chiral discrimination is based on the formation of ternary complexes between copper(II), a chiral selector (L-proline or trans-4-hydroxy-L-proline) and an amino acid. All amino acids containing aromatic moieties or not were detected at 214 nm because of their interactions with copper(II). In order to reduce copper(II) adsorption onto capillary walls, we used hexadimethrine bromide to reverse the electroosmotic flow. Using this original strategy, the studied enantiomers migrated in the opposite direction of the anodic electroosmosis. After optimising the analytical conditions taking into account the chiral resolution and the detection sensitivity, we performed very satisfactory enantioseparations not only of aromatic amino acids (tryptophan, tyrosine, phenylalanine and histidine) but also of aliphatic amino acids (threonine, serine, isoleucine and valine). These enantioseparations were performed in a short analysis time at 35 °C. In order to rationalise the obtained results, we evaluated the complexation constants corresponding to the formed ternary complexes by capillary electrophoresis and we used molecular mechanics modelling.  相似文献   

20.
Biomolecules such as serum proteins can interact with drugs in the body and influence their pharmaceutical effects. Specific and precise methods that analyze these interactions are critical for drug development or monitoring and for diagnostic purposes. Affinity capillary electrophoresis (ACE) is one technique that can be used to examine the binding between drugs and serum proteins, or other agents found in serum or blood. This article will review the basic principles of ACE, along with related affinity-based capillary electrophoresis (CE) methods, and examine recent developments that have occurred in this field as related to the characterization of drug–protein interactions. An overview will be given of the various formats that can be used in ACE and CE for such work, including the relative advantages or weaknesses of each approach. Various applications of ACE and affinity-based CE methods for the analysis of drug interactions with serum proteins and other binding agents will also be presented. Applications of ACE and related techniques that will be discussed include drug interaction studies with serum agents, chiral drug separations employing serum proteins, and the use of CE in hybrid methods to characterize drug binding with serum proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号