首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The laser-induced fluorescence spectra of jet-cooled benzo-18-crown-6 (B18C6) and dibenzo-18-crown-6 (DB18C6) exhibit a number of vibronic bands in the 35 000-37 000 cm(-1) region. We attribute these bands to monomers and hydrated clusters by fluorescence-detected IR-UV and UV-UV double resonance spectroscopy. We found four and two conformers for bare B18C6 and DB18C6, and the hydration of one water molecule reduces the number of isomers to three and one for B18C6-(H(2)O)(1) and DB18C6-(H(2)O)(1), respectively. The IR-UV spectra of B18C6-(H(2)O)(1) and DB18C6-(H(2)O)(1) suggest that all isomers of the monohydrated clusters have a double proton-donor type (bidentate) hydration. That is, the water molecule is bonded to B18C6 or DB18C6 via two O-H[dot dot dot]O hydrogen bonds. The blue shift of the electronic origin of the monohydrated clusters and the quantum chemical calculation suggest that the water molecule in B18C6-(H(2)O)(1) and DB18C6-(H(2)O)(1) prefers to be bonded to the ether oxygen atoms near the benzene ring.  相似文献   

2.
We report vibrational predissociation spectra of water cluster anions, (H(2)O)(n=)()(3)(-)(24)(-) in the HOH bending region to explore whether the characteristic red-shifted feature associated with electron binding onto a double H-bond acceptor (AA) water molecule survives into the intermediate cluster size regime. The spectra of the "tagged" (H(2)O)(n)()(-).Ar clusters indeed exhibit the signature AA band, but assignment of this motif to a particular isomer is complicated by the fact that argon attachment produces significant population of three isomeric forms (as evidenced by their photoelectron spectra). We therefore also investigated the bare clusters since they can be prepared exclusively in the high binding (isomer class I) form. Because the energy required to dissociate a water molecule from the bare complexes is much larger than the transition energies in the bending region, the resulting (linear) action spectroscopy selectively explores the properties of clusters with most internal energy content. The (H(2)O)(15)(-) predissociation spectrum obtained under these conditions displays a more intense AA feature than was found in the spectra of the Ar tagged species. This observation implies that not only is the AA motif present in the class I isomer, but also that it persists when the clusters contain considerable internal energy.  相似文献   

3.
A pairing scheme (GG7) between two neutral guanine nucleobases taking place via the Watson-Crick faces and involving two bridging water molecules is presented, which upon removal of a H5O2+ entity could convert into the hemideprotonated guanine pair (GG5).  相似文献   

4.
Clusters of Cu (2+)(H 2O) n , n = 6-12, formed by electrospray ionization, are investigated using infrared photodissociation spectroscopy, blackbody infrared radiative dissociation (BIRD), and density functional theory of select clusters. At 298 K, the BIRD rate constants increase with increasing cluster size for n >or= 8, but the trend reverses for the smaller clusters where Cu (2+)(H 2O) 6 is less stable than Cu (2+)(H 2O) 8. This trend in stability is consistent with a change in fragmentation pathway from loss of a water molecule for clusters with n >or= 9 to loss of hydrated protonated water clusters and the formation of the corresponding singly charged hydrated metal hydroxide for n 相似文献   

5.
The structure of dibenzo-18-crown-6-ether (DB18C6) and its hydrated clusters has been investigated in a supersonic jet. Two conformers of bare DB18C6 and six hydrated clusters (DB18C6-(H(2)O)(n)) were identified by laser-induced fluorescence, fluorescence-detected UV-UV hole-burning and IR-UV double-resonance spectroscopy. The IR-UV double resonance spectra were compared with the IR spectra obtained by quantum chemical calculations at the B3LYP/6-31+G* level. The two conformers of bare DB18C6 are assigned to "boat" and "chair I" forms, respectively, among which the boat form is dominant. All the six DB18C6-(H(2)O)(n) clusters with n = 1-4 have a boat conformation in the DB18C6 part. The water molecules form a variety of hydration networks in the boat-DB18C6 cavity. In DB18C6-(H(2)O)(1), a water molecule forms the bidentate hydrogen bond with the O atoms adjacent to the benzene rings. In this cluster, the water molecule is preferentially hydrogen bonded from the bottom of boat-DB18C6. In the larger clusters, the hydration networks are developed on the basis of the DB18C6-(H(2)O)(1) cluster.  相似文献   

6.
杂合型全局优化法优化水分子团簇结构   总被引:2,自引:0,他引:2  
曹益林   《物理化学学报》2004,20(8):785-789
基于遗传算法、快速模拟退火及共轭梯度方法提出了一种快速的杂合型全局优化方法(fast hybrid global optimization algorithm, FHGOA),并将这一方法应用于TIP3P和TIPS2模型水分子团簇(H2O)n结构的优化.在进行TIP3P模型水分子团簇结构的优化过程中,发现了能量比文献值更低的团簇结构,且执行效率有较大提高.把该方法应用到优化TIPS2模型的水分子团簇,发现最优结构和采用TTM2-F模型优化的水分子团簇结构在n < 17时完全相同,为全表面结构;而在n=17、19、22时为单中心水分子笼状结构;在n=25、27时为双中心水分子笼状结构.说明随着团簇中水分子个数的增加,采用TIPS2和TTM2-F势能函数优化的团簇最优结构有相同的变化趋势.  相似文献   

7.
Mechanisms of formation of the mutagenic product 8-oxoguanine (8OG) due to reactions of guanine with two separate OH* radicals and with H2O2 were investigated at the B3LYP/6-31G, B3LYP/6-311++G, and B3LYP/AUG-cc-pVDZ levels of theory. Single point energy calculations were carried out with the MP2/AUG-cc-pVDZ method employing the optimized geometries at the B3LYP/AUG-cc-pVDZ level. Solvent effect was treated using the PCM and IEF-PCM models. Reactions of two separate OH* radicals and H2O2 with the C2 position of 5-methylimidazole (5MI) were investigated taking 5MI as a model to study reactions at the C8 position of guanine. The addition reaction of an OH* radical at the C8 position of guanine is found to be nearly barrierless while the corresponding adduct is quite stable. The reaction of a second OH* radical at the C8 position of guanine leading to the formation of 8OG complexed with a water molecule can take place according to two different mechanisms, involving two steps each. According to one mechanism, at the first step, 8-hydroxyguanine (8OHG) complexed with a water molecule is formed ,while at the second step, 8OHG is tautomerized to 8OG. In the other mechanism, at the first step, an intermediate complexed (IC) with a water molecule is formed, the five-membered ring of which is open, while at the second step, the five-membered ring is closed and a hydrogen bonded complex of 8OG with a water molecule is formed. The reaction of H2O2 with guanine leading to the formation of 8OG complexed with a water molecule can also take place in accordance with two different mechanisms having two steps each. At the first step of one mechanism, H2O2 is dissociated into two OH* groups that react with guanine to form the same IC as that formed in the reaction with two separate OH* radicals, and the subsequent step of this mechanism is also the same as that of the reaction of guanine with two separate OH* radicals. At the first step of the other mechanism of the reaction of guanine with H2O2, the latter molecule is dissociated into a hydrogen atom and an OOH* group which become bonded to the N7 and C8 atoms of guanine, respectively. At the second step of this mechanism, the OOH* group is dissociated into an oxygen atom and an OH* group, the former becomes bonded to the C8 atom of guanine while the latter abstracts the H8 atom bonded to C8, thus producing 8OG complexed with a water molecule. Solvent effects of the aqueous medium on certain reaction barriers and released energies are appreciable. 5MI works as a satisfactory model for a qualitative study of the reactions of two separate OH* radicals or H2O2 occurring at the C8 position of guanine.  相似文献   

8.
Pyridine containing water clusters, H(+)(pyridine)(m)(H(2)O)(n), have been studied both experimentally by a quadrupole time-of-flight mass spectrometer and by quantum chemical calculations. In the experiments, H(+)(pyridine)(m)(H(2)O)(n) with m = 1-4 and n = 0-80 are observed. For the cluster distributions observed, there are no magic numbers, neither in the abundance spectra, nor in the evaporation spectra from size selected clusters. Experiments with size-selected clusters H(+)(pyridine)(m)(H(2)O)(n), with m = 0-3, reacting with D(2)O at a center-of-mass energy of 0.1 eV were also performed. The cross-sections for H/D isotope exchange depend mainly on the number of water molecules in the cluster and not on the number of pyridine molecules. Clusters having only one pyridine molecule undergo D(2)O/H(2)O ligand exchange, while H(+)(pyridine)(m)(H(2)O)(n), with m = 2, 3, exhibit significant H/D scrambling. These results are rationalized by quantum chemical calculations (B3LYP and MP2) for H(+)(pyridine)(1)(H(2)O)(n) and H(+)(pyridine)(2)(H(2)O)(n), with n = 1-6. In clusters containing one pyridine, the water molecules form an interconnected network of hydrogen bonds associated with the pyridinium ion via a single hydrogen bond. For clusters containing two pyridines, the two pyridine molecules are completely separated by the water molecules, with each pyridine being positioned diametrically opposite within the cluster. In agreement with experimental observations, these calculations suggest a "see-saw mechanism" for pendular proton transfer between the two pyridines in H(+)(pyridine)(2)(H(2)O)(n) clusters.  相似文献   

9.
We report a combined photoelectron and vibrational spectroscopy study of the (H(2)O)(7)(-) cluster anions in order to correlate structural changes with the observed differences in electron binding energies of the various isomers. Photoelectron spectra of the (H(2)O)(7)(-) . Ar(m) clusters are obtained over the range of m=0-10. These spectra reveal the formation of a new isomer (I') for m>5, the electron binding energy of which is about 0.15 eV higher than that of the type I form previously reported to be the highest binding energy species [Coe et al., J. Chem. Phys. 92, 3980 (1990)]. Isomer-selective vibrational predissociation spectra are obtained using both the Ar dependence of the isomer distribution and photochemical depopulation of the more weakly (electron) binding isomers. The likely structures of the isomers at play are identified with the aid of electronic structure calculations, and the electron binding energies, as well as harmonic vibrational spectra, are calculated for 28 low-lying forms for comparison with the experimental results. The HOH bending spectrum of the low binding type II form is dominated by a band that is moderately redshifted relative to the bending origin of the bare water molecule. Calculations trace this feature primarily to the bending vibration localized on a water molecule in which a dangling H atom points toward the electron cloud. Both higher binding forms (I and I') display the characteristic patterns in the bending and OH stretching regions signaling electron attachment primarily to a water molecule in an AA binding site, a persistent motif found in non-isomer-selective spectra of the clusters up to (H(2)O)(50)(-).  相似文献   

10.
Large molecular clusters can be considered as intermediate states between gas and condensed phases, and information about them can help us understand condensed phases. In this paper, ab initio quantum mechanical methods have been used to examine clusters formed of methanol and water molecules. The main goal was to obtain information about the intermolecular interactions and the structure of methanol/water clusters at the molecular level. The large clusters (CH(4)O...(H(2)O)(12) and H(2)O...(CH(4)O)(10)) containing one molecule of one component (methanol or water) and many (12, 10) molecules of the other component were considered. M?ller-Plesset perturbation theory (MP2) was used in the calculations. Several representative cluster geometries were optimized, and nearest-neighbor interaction energies were calculated for the geometries obtained in the first step. The results of the calculations were compared to the available experimental information regarding the liquid methanol/water mixtures and to the molecular dynamics and Monte Carlo simulations, and good agreement was found. For the CH(4)O...(H(2)O)(12) cluster, it was shown that the molecules of water can be subdivided into two classes: (i) H bonded to the central methanol molecule and (ii) not H bonded to the central methanol molecule. As expected, these two classes exhibited striking energy differences. Although they are located almost the same distance from the carbon atom of the central methanol molecule, they possess very different intermolecular interaction energies with the central molecule. The H bonding constitutes a dominant factor in the hydration of methanol in dilute aqueous solutions. For the H(2)O...(CH(4)O)(10) cluster, it was shown that the central molecule of water has almost three H bonds with the methanol molecules; this result differs from those in the literature that concluded that the average number of H bonds between a central water molecule and methanol molecules in dilute solutions of water in methanol is about two, with the water molecules being incorporated into the chains of methanol. In contrast, the present predictions revealed that the central water molecule is not incorporated into a chain of methanol molecules, but it can be the center of several (2-3) chains of methanol molecules. The molecules of methanol, which are not H bonded to the central water molecule, have characteristics similar to those of the methane molecules around a central water molecule in the H(2)O...(CH(4))(10) cluster. The ab initio quantum mechanical methods employed in this paper have provided detailed information about the H bonds in the clusters investigated. In particular, they provided full information about two types of H bonds between water and methanol molecules (in which the water or the methanol molecule is the proton donor), including information about their energies and lengths. The average numbers of the two types of H bonds in the CH(4)O...(H(2)O)(12) and H(2)O...(CH(4)O)(10) clusters have been calculated. Such information could hardly be obtained with the simulation methods.  相似文献   

11.
The effect of hydration on the electronic structure of H(2)O(2) is investigated by liquid-jet photoelectron spectroscopy measurements and ab initio calculations. Experimental valence electron binding energies of the H(2)O(2) orbitals in water are, on average, 1.9 eV red-shifted with respect to the gas-phase molecule. A smaller width of the first peak was observed in the photoelectron spectrum from the solution. Our experiment is complemented by simulated photoelectron spectra, calculated at the ab initio level of theory (with EOM-IP-CCSD and DFT methods), and using path-integral sampling of the ground-state density. The observed shift in ionization energy upon solvation is attributed to a combination of nonspecific electrostatic effects (long-range polarization) and of the specific interactions between H(2)O(2) and H(2)O molecules in the first solvation shell. Changes in peak widths are found to result from merging of the two lowest ionized states of H(2)O(2) in water due to conformational changes upon solvation. Hydration effects on H(2)O(2) are stronger than on the H(2)O molecule. In addition to valence spectra, we report oxygen 1s core-level photoelectron spectra from H(2)O(2)(aq), and observed energies and spectral intensities are discussed qualitatively.  相似文献   

12.
Inner-shell excitation spectra and fragmentation of small clusters of formic acid have been studied in the oxygen K-edge region by time-of-flight fragment mass spectroscopy. In addition to several fragment cations smaller than the parent molecule, we have identified the production of HCOOH.H+ and H3O+ cations characteristic of proton transfer reactions within the clusters. Cluster-specific excitation spectra have been generated by monitoring the partial ion yields of the product cations. Resonance transitions of O1s(C[double bond]O/OH) electrons into pi(CO)* orbital in the preedge region were found to shift in energy upon clusterization. A blueshift of the O1s(C[double bond]O)-->pi(CO)* transition by approximately 0.2 eV and a redshift of the O1s(OH)-->pi(CO)* by approximately 0.6 eV were observed, indicative of strong hydrogen-bond formation within the clusters. The results have been compared with a recent theoretical calculation, which supports the conclusion that the formic-acid clusters consist of the most stable cyclic dimer andor trimer units. Specifically labeled formic acid-d, HCOOD, was also used to examine the core-excited fragmentation mechanisms. These deuterium-labeled experiments showed that HDO+ was formed via site-specific migration of a formyl hydrogen within an individual molecule, and that HD2O+ was produced via the subsequent transfer of a deuterium atom from the hydroxyl group of a nearest-neighbor molecule within a cationic cluster. Deuteron (proton) transfer from the hydroxyl site of a hydrogen-bond partner was also found to take place, producing deuteronated HCOOD.D+ (protonated HCOOH.H+) cations within the clusters.  相似文献   

13.
Photoelectron spectroscopy of the water cluster anions, (H2O)n-, has revealed that several isomeric forms are present for most sizes, and here, we use vibrational spectroscopy to address the structure of the (H2O)6- isomer that more weakly binds the extra electron. To overcome the severe line broadening that occurs in the OH stretching region of this isomer caused by fast electron autodetachment, we concentrate on the low-energy bending modes of the perdeutero isotopomer. Sharp spectroscopic signatures are recovered for two isomers using argon predissociation spectroscopy, and the resulting bands are heavily overlapped. To extract their independent contributions to the observed spectra, we exploit the substantial dependence of their relative populations on the number of attached argon atoms in the (D2O)6-.Ar(m) clusters, determined by photoelectron spectroscopy. The vibrational spectra of each isomer can then be isolated by spectral subtraction, which is implemented with a covariance mapping approach. The resulting band patterns establish that the more weakly binding isomer does not display the characteristic electron-binding motif common to the more strongly bound isomer class. Whereas the strongly binding isomer features a single water molecule pointing toward the excess electron cloud with both of its hydrogen atoms, the spectrum of the more weakly binding isomer suggests a structure where the electron is bound by a number of dangling OH groups corresponding to water molecules in acceptor-donor binding sites.  相似文献   

14.
Photoelectron spectra of two species, Al3O3(H2O)2- and Al3O3(CH3OH)2-, that are produced by the addition of two water or methanol molecules to Al3O3- are interpreted with density-functional geometry optimizations and electron propagator calculations of vertical electron detachment energies. In both cases, there is only one isomer that is responsible for the observed spectral features. A high barrier to the addition of a second molecule may impede the formation of Al3O3N2H6- clusters in an analogous experiment with NH3.  相似文献   

15.
IR-UV double resonance spectroscopy and ab initio calculations were employed to investigate the structures and vibrations of the aromatic amino acid, L-phenylalanine-(H(2)O)(n) clusters formed in a supersonic free jet. Our results indicate that up to three water molecules are preferentially bound to both the carbonyl oxygen and the carboxyl hydrogen of L-phenylalanine (L-Phe) in a bridged hydrogen-bonded conformation. As the number of water molecules is increased, the bridge becomes longer. Two isomers are found for L-Phe-(H(2)O)(1), and both of them form a cyclic hydrogen-bond between the carboxyl group and the water molecule. In L-Phe-(H(2)O)(2), only one isomer was identified, in which two water molecules form extended cyclic hydrogen bonds with the carboxyl group. In the calculated structure of L-Phe-(H(2)O)(3) the bridge of water molecules becomes larger and exhibits an extended hydrogen-bond to the pi-system. Finally, in isolated L-Phe, the D conformer was found to be the most stable conformer by the experiment and by the ab initio calculation.  相似文献   

16.
Vibrational spectroscopy of size-selected formamide-water clusters, FA-(H2O)n , n = 1-4, prepared in a supersonic jet is performed with vacuum-ultraviolet-ionization detected-infrared predissociation spectroscopy (VUV-ID-IRPDS). The cluster structures are determined through comparisons of the observed IR spectra with theoretical calculations at the MP2/6-31++G** level. The FA-(H2O)n , n = 1-3, clusters have ring-type structures, where water molecules act as both single donor and single acceptor in the hydrogen-bond network between the amino and carbonyl groups of FA. For FA-(H2O)4, on the other hand, the absence of the free NH stretching vibration indicates formation of a double ring type structure, where two NH bonds of the amino group and the carbonyl oxygen of FA form hydrogen bonds with water molecules. An infrared spectrum of the formamide-water cluster cation, [FA-H2O](+), is also observed with infrared predissociation spectroscopy of vacuum-ultraviolet-pumped ion (IRPDS-VUV-PI). No band is observed for the free OH stretches of neutral water. This shows [FA-H2O](+) has such a structure that one of the hydrogen atoms of the water moiety is transferred to the carbonyl oxygen of FA(+).  相似文献   

17.
The valence ionization and double ionization spectra of the water molecule, of the water dimer, and the cyclic water clusters (H2O)3 and (H2O)4 are calculated by ab initio Green's function methods and discussed in some detail. Particular attention is paid to the analysis of the development of the spectra with increasing cluster size. Electronic decay following inner valence ionization is addressed and a crude estimate for the kinetic energy spectrum of the secondary electrons is given for the clusters.  相似文献   

18.
Infrared spectroscopy of gas-phase hydrated clusters provides us much information on structures and dynamics of water networks. However, interpretation of spectra is often difficult because of high internal energy (vibrational temperature) of clusters and coexistence of many isomers. Here we report an approach to vary these factors by using the inert gas (so-called "messenger")-mediated cooling technique. Protonated water clusters with a messenger (M), H(+)(H(2)O)(4-8)·M (M = Ne, Ar, (H(2))(2)), are formed in a molecular beam and probed with infrared photodissociation spectroscopy in the OH stretch region. Observed spectra are compared with each other and with bare H(+)(H(2)O)(n). They show clear messenger dependence in their bandwidths and relative band intensities, reflecting different internal energy and isomer distribution, respectively. It is shown that the internal energy follows the order H(+)(H(2)O)(n) > H(+)(H(2)O)(n)·(H(2))(2) > H(+)(H(2)O)(n)·Ar > H(+)(H(2)O)(n)·Ne, while the isomer-selectivity, which changes the isomer distribution in the bare system, follows the order H(+)(H(2)O)(n)·Ar > H(+)(H(2)O)(n)·(H(2))(2) > H(+)(H(2)O)(n)·Ne ~ (H(+)(H(2)O)(n)). Although the origin of the isomer-selectivity is unclear, comparison among spectra measured with different messengers is very powerful in spectral analyses and makes it possible to easily assign spectral features of each isomer.  相似文献   

19.
Ab initio and density functional methods have been used to examine the structures and energetics of the hydrated clusters of methane sulfonic acid (MSA), CH3SO3H.(H2O)n (n = 1-5). For small clusters with one or two water molecules, the most stable clusters have strong cyclic hydrogen bonds between the proton of OH group in MSA and the water molecules. With three or more water molecules, the proton transfer from MSA to water becomes possible, forming ion-pair structures between CH3SO3- and H3O+ moieties. For MSA.(H2O)3, the energy difference between the most stable ion pair and neutral structures are less than 1 kJ/mol, thus coexistence of neutral and ion-pair isomers are expected. For larger clusters with four and five water molecules, the ion-pair isomers are more stable (>10 kJ/mol) than the neutral ones; thus, proton transfer takes place. The ion-pair clusters can have direct hydrogen bond between CH3SO3- and H3O+ or indirect one through water molecule. For MSA.(H2O)5, the energy difference between ion pairs with direct and indirect hydrogen bonds are less than 1 kJ/mol; namely, the charge separation and acid ionization is energetically possible. The calculated IR spectra of stable isomers of MSA.(H2O)n clusters clearly demonstrate the significant red shift of OH stretching of MSA and hydrogen-bonded OH stretching of water molecules as the size of cluster increases.  相似文献   

20.
First principles molecular dynamics simulations are carried out to investigate the solvation of an excess electron and a lithium atom in mixed water-ammonia cluster (H(2)O)(5)NH(3) at a finite temperature of 150 K. Both [(H(2)O)(5)NH(3)](-) and Li(H(2)O)(5)NH(3) clusters are seen to display substantial hydrogen bond dynamics due to thermal motion leading to many different isomeric structures. Also, the structures of these two clusters are found to be very different from each other and also very different from the corresponding neutral cluster without any excess electron or the metal atom. Spontaneous ionization of Li atom occurs in the case of Li(H(2)O)(5)NH(3). The spatial distribution of the singly occupied molecular orbital shows where and how the excess (or free) electron is primarily localized in these clusters. The populations of single acceptor (A), double acceptor (AA), and free (NIL) type water and ammonia molecules are found to be significantly high. The dangling hydrogens of these type of water or ammonia molecules are found to primarily capture the free electron. It is also found that the free electron binding motifs evolve with time due to thermal fluctuations and the vertical detachment energy of [(H(2)O)(5)NH(3)](-) and vertical ionization energy of Li(H(2)O)(5)NH(3) also change with time along the simulation trajectories. Assignments of the observed peaks in the vibrational power spectra are done and we found a one to one correlation between the time-averaged populations of water and ammonia molecules at different H-bonding sites with the various peaks of power spectra. The frequency-time correlation functions of OH stretch vibrational frequencies of these clusters are also calculated and their decay profiles are analyzed in terms of the dynamics of hydrogen bonded and dangling OH modes. It is found that the hydrogen bond lifetimes in these clusters are almost five to six times longer than that of pure liquid water at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号