首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stereospecific cyclizations of (3′R, 7′R, 11′R)-α-tocopherolquinone (2) are reported: Treatment with conc. sulfuric acid in methanol at 0-5° gave (2R, 4′R, 8′R)-α-tocopherol (1a) with complete retention of configuration at C-3′.  相似文献   

2.
Optically active (all-E,2R,2′R)-oscillol (= (all-E,2R,2′R)-3,4,3′,4′-tetradehydro-1,2,1′,2′-tetrahydro-ψ,ψ-carotene-1,2,1′,2′-tetrol; 1 ) was synthesized according to the C10 + C20 + C10 = C40 strategy, applying the Wittig reaction to couple the synthons 4 and 6 . The chiral centre was introduced by a Sharpless dihydroxylation of 3-methylbut-2-enyl 4-nitrobenzoate ( 8 ).  相似文献   

3.
Starting from (R)-3-hydroxybutyric acid ((R)- 10 ) the C45- and C50-carotenoids (all-E,2S,2′S)-bacterioruberm ( 1 ), (all-E,2S,2′S)-monoanhydrobacterioruberin ( 2 ), (all-E,2S,2′S)-bisanhydrobacterioruberin ( 3 ), (all-E,2R,2′R)-3,4,3′,4′-tetrahydrobisanhydrobacterioruberin ( 5 ), and (all-E,S)-2-isopentenyl-3,4-dehydrorhodopin ( 6 ) were synthesized. By comparison of the chiroptical data of the natural and the synthetic compounds, the (2S)- and (2′S)-configuration of the natural products 1–3 and 6 was established.  相似文献   

4.
As an extension of previous studies on the total synthesis of (2R,4′R,8′R)-α-tocopherol ( 1 ) [1] [2], (S)-(?)-2-(6-benzyloxy-2,5,7,8-tetramethylchroman)acetic acid ( 6 ), a pivotal intermediate, possessing the absolute configuration required for construction of 1 was prepared by optical resolution of the racemic modification 11 . the latter substance was obtained by two routes, one emanating from the hydroxy acetal 7 [1] and the other based upon the Lewis acid mediated cycloaddition of trimethylhydroquinone to rac.-3-hydroxy-3-methylpent-4-en-l-yl acetate ( 16 ) giving rac. ethyl 2-(6-hydroxy-2,5,7,8-tetramethyl-chroman)acetate ( 12 ).  相似文献   

5.
Methyl 2-O-benzyl-3,6-thioanhydro-α-D-mannopyranoside ( 9 ) was obtained in eight steps from the commercially available methyl α-D-glucopyranoside. Compound 9 was transformed into (2R,3R,4S)-3-benzyloxy-4-hydroxy-2-[(R)-1-benzyloxy-4-hydroxybutyl]thiolane ( 14 ) by acid hydrolysis of its 2,4-di-O-benzyl derivative 10 followed by reaction of the not isolated 2,4-di-O-benzyl-3,6-thioanhydro-D-mannose ( 11 ) with ethoxycarbonylmethylenetriphenylphosphorane to give an = 1:1 E/Z mixture of the corresponding α,β-unsaturated ester ( 12 ). Finally, catalytic hydrogenation of 12 to ethyl (R)-4-benzyloxy-4-[(2′R)3′R,4′S)-3′-benzyloxy-4′-hydroxythiolan-2′-yl]butanoate ( 13 ) and subsequent reduction with lithium aluminum hydride gave the title compound 14 .  相似文献   

6.
Synthesis and Chirality of (5R, 6R)-5,6-Dihydro-β, ψ-carotene-5,6-diol, (5R, 6R, 6′R)-5,6-Dihydro-β, ε-carotene-5,6-diol, (5S, 6R)-5,6-Epoxy-5,6-dihydro-β,ψ-carotene and (5S, 6R, 6′R)-5,6-Epoxy-5,6-dihydro-β,ε-carotene Wittig-condensation of optically active azafrinal ( 1 ) with the phosphoranes 3 and 6 derived from all-(E)-ψ-ionol ( 2 ) and (+)-(R)-α-ionol ( 5 ) leads to the crystalline and optically active carotenoid diols 4 and 7 , respectively. The latter behave much more like carotene hydrocarbons despite the presence of two hydroxylfunctions. Conversion to the optically active epoxides 8 and 9 , respectively, is smoothly achieved by reaction with the sulfurane reagent of Martin [3]. These syntheses establish the absolute configurations of the title compounds since that of azafrin is known [2].  相似文献   

7.
Stereochemical Correlations between (2R,4′R,8′R)-α-Tocopherol, (25S,26)-Dihydroxycholecalciferol, (–)-(1S,5R)-Frontalin and (–)-(R)-Linalol The optically active C5- and C4-building units 1 and 2 with their hydroxy group at a asymmetric C-atom were transformed to (–)-(1S,5R)-Frontalin ( 7 ) and (–)-(3R)-Linalol ( 8 ) respectively; 1 and 2 had been used earlier in the preparation of the chroman part of (2R,4′R,8′R)-α-Tocopherol ( 6a , vitamin E), and for introduction of the side chain in (25S,26)-Dihydroxycholecalciferol ((25S)- 4 ), a natural metabolite of Vitamin D3. The stereochemical correlations resulting from these converions fit into a coherent picture with those correlations already known from literature and they confirm our earlier stereochemical assignments. A stereochemical assignment concerning the C(25)-epimers of 25,26-Dihydroxycholecalciferol that was in contrast to our findings and that initiated the conversion of 1 and 2 to 7 resp. 8 for additional stereochemical correlations has been corrected in the meantime by the authors [26].  相似文献   

8.
( all-E)-12′-Apozeanthinol, Persicaxanthine, and Persicachromes Reexamination of the so-called ‘persicaxanthins’ and ‘persicachromes’, the fluorescent and polar C25-apocarotenols from the flesh of cling peaches, led to the identification of the following components: (3R)-12′-apo-β-carotene-3,12′-diol ( 3 ), (3S,5R,8R, all-E)- and (3S,5R,8S,all-E)-5,8-epoxy-5,8-dihydro-12′-apo-β-carotene-3,12′-diols (4 and 5, resp.), (3S,5R,6S,all-E)-5,6-epoxy-5,6-dihydro-l2′-apo-β-carotene-3,12′-diol =persicaxanthin; ( 6 ), (3S,5R,6S,9Z,13′Z)-5,6-dihydro-12′apo-β-carotene-3,12′-diol ( 7 ; probable structure), (3S,5R,6S,15Z)-5,6-epoxy-5,6-dihydro-12′-apo-β-carotene-3,12′-diol ( 8 ), and (3S,5R,6S,13Z)-5,6-epoxy-5,6-dihydro-12′-apo-β-carotene-3,12′-diol ( 9 ). The (Z)-isomers 7 – 9 are very labile and, after HPLC separation, isomerized predominantly to the (all-E)-isomer 6 .  相似文献   

9.
《Tetrahedron: Asymmetry》2007,18(4):513-519
Total synthesis of (4R,5S,6E,14S)- and (4R,5S,6E,14R)-cystothiazoles F 3 was achieved from the chiral bithiazole-type primary alcohols [(S)- and (R)-4-ethoxycarbonyl-2′-(1-hydroxymethylethyl)-2,4′-bithiazoles 8], which were obtained based on the enzymatic resolution of racemic alcohol 8 and its acetate 9. From a direct comparison by means of chiral HPLC between natural cystothiazole F 3 and synthetic compounds [(4R,5S,6E,14S)- and (4R,5S,6E,14R)-cystothiazoles 3], natural cystothiazole F 3 was found to be a 33:67 diastereomeric mixture [(4R,5S,6E,14S)-3:(4R,5S,6E,14R)-3 = 33:67].  相似文献   

10.
Starting from the esters (2E,4S)- 6 and (2E,4R)- 6 , bromo aldehydes (S)- 9 and (R)- 9 as well as bromo alcohols (S)- 10 and (R)- 10 , respectively, were prepared. Bromo alcohol (R)- 8 was converted to the diol (2E,4R)- 16 . Ozonolysis of the latter led to aldehyde (R)- 17 , which was transformed, by a Wittig reaction, to (2R,4E,6R)- 18 , corresponding to the C(7)-to-C(14) segment of phomenoic acid ( 1 ). Attempts to improve the yields by applying a Julia coupling of (R)- 23 , which was prepared from (2E,4R)- 7 , with (R)- 24 were unsuccessful. Finally, the coupling of the iodo derivative (2E,4S)- 28 with the lithiated derivative of 1,3-dithiane 30 by the Corey-Seebach ‘Umpolung’ led to (3S,4E)- 32 which is a derivative of the C(7)-to-C(14) segment of 1 , suitable for further transformations.  相似文献   

11.
Continuing studies of the global extracts from cultures of the marine deuteromycete Dendryphiella salina have led to the isolation of novel compounds that add to the scarce list of marine fungal metabolites. Besides (22E)-ergosta-4.6,8(14),22-tetraen-3-one which, though known from basidiomycetes, was unknown in the sea, they are an unusual glyceryl ester, i.e. glycer-1-yl dendryphiellale A (= (+)-(2R)-2,3-dihydroxyprop-l-yl (6S,2E,4E)6-methylocta-2,4-dienoate; (+)- 1 ), a trinor-eremophilane, i.e. dendryphiellin A1 ( = (+)-(3R*,4E,6E)-7-{[(1R*,2S*,7R*,8aR*)-1,2,6,7,8,8a-hexahydro-7-hydroxy-1,8a-dimethyl-6-oxonaphthalen-2yl]oxycarbonyl}-3-methylhepta-4,6-dienoic acid; (+)- 11 ), and two eremophilanes, i.e. dendryphiellin El ( = (+)-(1R*, 2S*, 7S*,8aR*)-1,2,6,7,8,8a-hexahydro-1,8a-dimethyl-7-(1-methylethenyl)-6-oxonaphthalen-2-yl(6S,2E,4E)-6-methyl-octa-2,4-dienoate; (+)- 13 ) and dendryphiellin E2 ( = (+)-(1R*, 2S*, 8aR*)-1,2,6,7,8,8a-hexahydro-7-isopropyl-idene-1,8a-dimethyl-6-oxonaphthalen-2-yl (6S,2E,4E)-6-Methylocta-2,4-dienoate; (+)- 14 ). Absolute configurations have been established for (+)- 1 via total synthesis and for the acid portion of (+)- 13 and (+)- 14 via transesterification in NaOMe/MeOH which gave in both cases melhyl dendryphiellate A ((+)- 16 ) of known configuration and the free alcoholic moiety of (+)- 14 , i.e. (+)- 17 .  相似文献   

12.
A synthesis and the determination of the absolute configuration of (?)-(1S, 3R′ 6R, 8R)-2, 7-dioxa-isotwistane ( 13 ) and (?)-(1R, 3R, 6R, 8R)-2, 7-dioxa-twistane ( 14 ) is described. The results for 14 are compared with those for carboeyclic (+)-twistane ( 2 ) of known chirality.  相似文献   

13.
Separation and Absolute Configuration of the C(8)-Epimeric (app-E)-Neochromes (Trollichromes) and -Dinochromes The C(8′)-epimers of (all-E)-neochrome were separated by HPLC and carefully characterized. The faster eluted isomer, m.p. 197.8–198.3°, is shown to have structure 3 ((3S,5R,6R,3′S,5′R,8′R)-5′,8′-epoxy-6,7-dodehydro-5,6,5′,8′-tetrahydro-β,β-carotene-3,5,3′-triol). To the other isomer, m.p. 195-195.5°, we assign structure 6 , ((3S,5R,6R,3′S,5′R,8′R)-5′,8′-epoxy-6,7-didehydro-5,6,5′,8′-tetrahydro-β,β-carotene-3,5,3′-triol). The already known epimeric dinochromes (= 3-O-acetylneochromes) can now be formulated as 4 and 5 , (‘epimer 1’ and its trimethylsilyl ether) and 7 and 8 , (‘epimer 2’ and its trimethylsilyl ether), respectively.  相似文献   

14.
Carotenoids from Hips of Rosa pomifera: Discovery of (5Z)-Neurosporene; Synthesis of (3R, 15Z)-Rubixanthin Extensive chromatographic separations of the mixture of carotenoids from ripe hips of R. pomifera have led to the identification of 43 individual compounds, namely (Scheme 2): (15 Z)-phytoene (1) , (15 Z)-phytofluene (2) , all-(E)-phytofluene (2a) , ξ-carotene (3) , two mono-(Z)-ξ-carotenes ( 3a and 3b ), (6 R)-?, ψ-carotene (4) , a mono-(Z)-?, ψ-carotene (4a) , β, ψ-carotene (5) , a mono-(Z)-β, ψ-carotene (5a) , neurosporene (6) , (5 Z)-neurosporene (6a) , a mono-(Z)-neurosporene (6b) , lycopene (7) , five (Z)-lycopenes (7a–7e) , β, β-carotene (8) , two mono-(Z)-β, β-carotenes (probably (9 Z)-β, β-carotene (8a) and (13 Z)-β, β-carotene (8b) ), β-cryptoxanthin (9) , three (Z)-β-cryptoxanthins (9a–9c) , rubixanthin (10) , (5′ Z)-rubixanthin (=gazaniaxanthin; 10a ), (9′ Z)-rubixanthin (10b) , (13′ Z)- and (13 Z)-rubixanthin (10c and 10d , resp.), (5′ Z, 13′ Z)- or (5′ Z, 13 Z)-rubixanthin (10e) , lutein (11) , zeaxanthin (12) , (13 Z)-zeaxanthin (12b) , a mono-(Z)-zeaxanthin (probably (9 Z)-zeaxanthin (12a) ), (8 R)-mutatoxanthin (13) , (8 S)-mutatoxanthin (14) , neoxanthin (15) , (8′ R)-neochrome (16) , (8′ S)-neochrome (17) , a tetrahydroxycarotenoid (18?) , a tetrahydroxy-epoxy-carotenoid (19?) , and a trihydroxycarotenoid of unknown structure. Rubixanthin (10) and (5′ Z)-rubixanthin (10a) can easily be distinguished by HPLC. separation and CD. spectra at low temperature. The synthesis of (3 R, 15 Z)-rubixanthin (29) is described. The isolation of (5 Z)-neurosporene (6a) supports the hypothesis that the ?-end group arises by enzymatic cyclization of precursors having a (5 Z)- or (5′ Z)-configuration.  相似文献   

15.
Absolute Configuration of Loroxanthin (=(3R, 3′R, 6′R)-β, ?-Carotene-3, 19, 3′-triol) ‘Loroxanthin’, isolated from Chlorella vulgaris, was separated by HPLC. methods in two major isomers, a mono-cis-loroxanthin and the all-trans-form. Solutions of the pure isomers easily set up again a mixture of the cis/trans-isomers. Extensive 1H-NMR. spectral measurements at 400 MHz allowed to establish the 3′, 6′-trans-configuration at the ?-end group in both isomers and the (9E)-configuration in the mono-cis-isomer. The absolute configurations at C(3) and C(6′) were deduced from CD. correlations with synthetic (9Z, 3R, 6′R)-β, ?-carotene-3, 19-diol ( 5 ) and (9E, 3R, 6′R)-β, ?-carotene-3, 19-diol ( 6 ), respectively. Thus, all-trans-loroxanthin ( 3 ) is (9Z, 3R, 3′R, 6′R)-β, ?-carotene-3, 19, 3′-triol and its predominant mono-cis-isomer is (9E, 3R, 3′R, 6′R)-β, ?-carotene-3, 19, 3′-triol ( 4 ). Cooccurrence in the same organism and identical chirality at all centers suggest that loroxanthin is biosynthesized from lutein ( 2 ).  相似文献   

16.
Total Synthesis of Natural α-Tocopherol A short and efficient route to optically pure (+)-(3 R, 7 R)-trimethyldodecanol ( 14 ) is demonstrated, 14 serving as side chain unit in the preparation of natural vitamin E. The synthesis of 14 is based on the concept of using a single optically active C5-synthon of suitable configuration and functionalization to introduce both asymmetric centres in 14 . (?)-(S)-3-Methyl-γ-butyrolacton ( 1 ) and ethyl (?)-(S)-4-bromo-3-methylbutyrate ( 2 ), respectively, is used in a sequence of either two Grignard C,C-coupling reactions 5 → 8 and 12 → 13 or two Wittig reactions 17a → 18 and 20 → 21 to achieve this goal. 14 is converted to (2 R, 4′R, 8′R)-α-tocopherol (= vitamin E) by coupling with a chroman unit in known manner. Optical purity of products and intermediates is established.  相似文献   

17.
Synthesis of Optically Active Carotenoids with (R)-4-Hydroxy β-End Groups We describe the synthesis of optically active iso-β-kryptoxanthin ( 12 ; (R)-β,β-caroten-4-ol), iso-α-kryptoxanthins 14 ((4R,6′RS)-β,ε-caroten-4-ol) and 16 ((4R,6′R)-β,ε-caroten-4-ol), 4′-hydroxyechinenone ( 18 ; (R)-4′-hydroxy-β,β-caroten-4-one), and isorubixanthin ( 20 ; (R)-β,ω,-caroten-4-ol), their 400-MHz-1H-NMR spectra, CD spectra and HPLC behaviour.  相似文献   

18.
Aervalanata possesses various useful medicinal and pharmaceutical activities. Phytochemical investigation of the plant has now led to the isolation of a new 2α,3α,15,16,19-pentahydroxy pimar-8(14)-ene diterpenoid (1) together with 12 other known compounds identified as β-sitosterol (2), β-sitosterol-3-O-β-D-glucoside (3), canthin-6-one (4), 10-hydroxycanthin-6-one (aervine, 5), 10-methoxycanthin-6-one (methylaervine, 6), β-carboline-1-propionic acid (7), 1-O-β-D-glucopyranosyl-(2S,3R,8E)-2-[(2′R)-2-hydroxylpalmitoylamino]-8-octadecene-1,3-diol (8), 1-O-(β-D-glucopyranosyl)-(2S,3S,4R,8Z)-2-[(2′R)-2′-hydroxytetracosanoylamino]-8(Z)-octadene-1,3,4-triol (9), (2S,3S,4R,10E)-2-[(2′R)-2′-hydroxytetracosanoylamino]-10-octadecene-1,3,4-triol (10), 6′-O-(4″-hydroxy-trans-cinnamoyl)-kaempferol-3-O-β-D-glucopyranoside (tribuloside, 11), 3-cinnamoyltribuloside (12) and sulfonoquinovosyldiacylglyceride (13). Among these, six compounds (813) are reported for the first time from this plant. Cytotoxicity evaluation of the compounds against five cancer cell lines (CHO, HepG2, HeLa, A-431 and MCF-7) shows promising IC50 values for compounds 4, 6 and 12.  相似文献   

19.
The Diels-Alder adduct of furan and 1-cyanovinyl (1′R)-camphanate was converted into methyl [(tert-butyl)-dimethylsilyl 5-deoxy-2, 3-O-isopropylidene-β-L -ribo-hexofuranosid] uronate ((+)- 4 ). Reduction with diisobutyl-aluminium hydride gave the corresponding aldehyde which was condensed with the ylide derived from triphenyl-(propyl)phosphonium bromide to give (1R, 2S, 3S, 4S)-1-[(tert-butyl)dimethylsilyloxy]tetrahedro-2, 3-(isopropyl-idenedioxy)-4-[(Z)-pent-2′ -enyl]furan ((+)- 7 ). Removal of the silyl protective group gave a mixture of the corresponding furanose that underwent Wittig reaction with the ylide derived from [8-(methoxycarbonyl)-octyl]triphenylphosphonium bromide to yield methyl (11R, 12S, 13S, 9Z, 15Z)-13-hydroxy-11, 12-(isopropylidene-dioxy)octadeca-9, 15-dienoate ((?)- 9 ). Acidic hydrolysis, then saponification afforded (11R, 12S, 13S, 9Z, 15Z)-11, 12, 13-trihydroxyoctadeca-9, 15-dienoic acid ( 1 ).  相似文献   

20.
Luteochrome isolated from the tubers of a white-fleshed variety of sweet potato (Ipomoea batatas LAM .) has been shown by HPLC, 1H-NMR and CD spectra to consist of a mixture of (5R,6S,5′R,8′R)- and (5R,6S,5′R,8′S)- 5,6:5′,8′-diepoxy-5,6,5′,8′-tetrahydro-β,β-carotene ( 1 and 2 , resp.). Therefore, its precursor is (5R,6S,5′R,6′S)-5,6:5′,6′-diepoxy-5,6,5′,6′-tetrahydro-β,β-carotene ( 4 ). This is the first identification of luteochrome as a naturally occurring carotenoid and, at the same time, gives the first clue to the as yet unknown chirality of the widespread β,β-carotene diepoxide. These facts demonstrate that the enzymic epoxidation of the β-end group occurs from the α-side, irrespective of the presence of OH groups on the ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号