首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hyperfine structure of dilute 166Er impurities in Au has been investigated between 1.8 and 60 K by Mössbauer spectroscopy. The hyperfine spectrum of the Γ7 electronic ground state is clearly observed below 4.2 K while at higher temperatures there is an indication of the contribution from the excited CEF-states Γ(1)8 and Γ6. Using Hirst's relaxation theory for the Γ7 ground state the magnetic hyperfine coupling constant A=(247±3) MHz and the exchange coupling constant Jsf=(0.10±0.02)eV were derived. A quadruple coupling constant B of about 1 MHz was estimated from the hyperfine pattern of the Γ(1)8 quartet.  相似文献   

2.
The influence of an electric field on the energy levels of the 6d2D3/2-state in the Tl I-spectrum was studied by measuring the shifts of level crossing signals relative to their magnetic field positions. The following values of the magnetic hyperfine constantA and the Stark parameterβ were deduced: ¦A¦=42(2) Mc/sec · gJ/0.8, ¦β¦=0.12(1) Mc/sec/(kV/cm)2 · gJ/0.8 and A/β>0. Assuming that the main part of the energy shifts are caused by admixtures of the 7p2P-states the sign of the Stark parameterβ and —from the measured ratio A/β>0 —the sign of theA-factor should be negative. For electric field strength E?30 kV/cm the energy shifts of the 6d2D3/2state are considerably greater than the hyperfine structure splitting. Therefore the case of decoupled hyperfine structure is considered.  相似文献   

3.
The hyperfine structure of the 32P3/2-state in the Na(I)-spektrum was investigated by optical double resonance. Three zero fieldrf-transitions (ΔF=±1, ΔmF=0) were detected and thus the unambiguous interpretation of therf-spectrum was made possible. From an analysis of therf-spectrum one obtains the magnetic hyperfine structure splitting constant a=(18.5 ?0.2 +0.6 ) Mc/sec the electric quadrupole interaction constantb=(3.2±0.5) Mc/sec which yields an electric quadrupole moment Q(Na23)=(0.138±0.025)·1024cm2.  相似文献   

4.
The hyperfine structure of the 32P3/2 State of Na23has been measured by the optical double resonance technique in a magnetic field of 3.1 kG sufficiently strong to decouple completelyI andJ. In the case of π or (σ+?) excitation the double resonance signal represents the superposition curve of eight unresolved radio-frequency transitions. The dependence of the signal on the pressure of sodium vapour and the radio-frequency field strength has been studied. The analysis of the experimental curves yields for the hyperfine coupling constants the valuesa=(18.7±0.4) Mc/s andb=(3.4±0.4) Mc/s. The nuclear electric quadrupole moment derived from the ratio ofb/a isQ=(0.146±0.02) · 10?24cm2. The Lande factor and the lifetime for the 32P3/2state are gJ=1.3344±0.0004 and τ=(1.61±0.07) · 10?8 sec.  相似文献   

5.
The hyperfine structure splittings of the electronic ground states2 D 3/2 and2 D 3/2 of the stable isotope Sc45 have been measured by the atomic beam magnetic resonance method. From these splittings the magnetic dipole and electric quadrupole interaction constants are found to bea 3/2=(269,560±0,02) Mc/sb 3/2=?(26,37±0,1) Mc/sa 5/2=(109,034±0,01) Mc/sb 5/2=?(37,31±0,1) Mc/s. The values of the electric quadrupole moment calculated fromb 3/2 andb 5/2 differ by about 5% indicating that the configuration 3d 4s 2 of the ground states is perturbed by higher configurations. Averaging these two values we obtain for the quadrupole moment of Sc45 Q(Sc45)=?(0,22±0,01) · 10?24 cm2.  相似文献   

6.
The hyperfine structure of the excited 32 P 3/2- and 42 P 3/2-state of Na23 has been investigated in a level-crossing-experiment by means of a detailed analysis of the dependence of the scattered resonance light as a function of the magnetic field. From the experimental curves the following results for the hyperfine structure constantsA andB and for the lifetimesΤ were deduced 32 P 3/2-state: 42 P 3/2-state:A=18.65(10)Mc/sA=6.006(30)g j/1.334Mc/sB=2.82(30)Mc/sB=0.86 (9)g j/1.334Mc/sΤ=1.60 (3) · 10?8sΤ=6.56 (25)1.334/gj·10?8 s. The nuclear electric quadrupolemoment of Na23 derived from these values isQ=0,097 · 10?24 cm2, where the Sternheimer-correction has been applied.  相似文献   

7.
The hyperfine structure splitting of the metastable3 P 2-state of Kr83 has been measured by the atomic beam magnetic resonance method. A glow discharge served as a source of metastable atoms which were detected by surface ejection of electrons from a metal. In order to improve the signal-to-noise-ratio the magnetic C-field was modulated at a frequency of 37 cps. From the measured splittings the following hfs coupling constants were determined:
$$A(^3 P_2 ) = - (243 \cdot 970 \pm 0 \cdot 004)Mc/sec,B(^3 P_2 ) = - (452 \cdot 12 \pm 0 \cdot 08)Mc/sec.$$  相似文献   

8.
To study the modification of the value of the nuclear quadrupole moment obtained without Sternheimer correction from measurements in states with different principal quantum numbers, the hyperfine structure splitting of the 52 P 3/2 and the 62 P 3/2 excited states of Rb I has been investigated with the optical double resonance method. The experiments, in which isotopic enriched samples of Rb85 and Rb87 were used, have been carried out in the 52 P 3/2 state without a static magnetic field. In the 62 P 3/2 state, a static magnetic field was applied. For the 52 P 3/2 state, the hyperfine structure constants areA(Rb85)=25.029(16) Mc/s,B(Rb85)=26.032(70) Mc/s,A(Rb87)=84.852(30) Mc/s,B(Rb87)=12.611(70) Mc/s. The corresponding constants for the 62 P 3/2 state areA(Rb85)=8.25(10) Mc/s,B(Rb85)=8.16(20) Mc/s,A(Rb87)=27.96(35) Mc/s,B(Rb87)=3.95(10) Mc/s. The values of the nuclear quadrupole moments, derived from both finestructure states, can be brought into agreement when the Sternheimer core correction is applied. The Landé factor for the 62 P 3/2 state isg j=1.334(1).  相似文献   

9.
Using the method of laser-induced fluorescence in an atomic beam we have measured the hyperfine splitting constants, A and B, of the ground and excited states of the optical transition 4f 76s 2 8S $_{1/2}\to 4f^{7}$ 6s6p 6P5/2 (564.58 nm) for 151???155Eu isotopes. For all isotopes, the magnetic dipole constants of the 6P5/2 atomic level are determined to a precision better than 0.04%. The A and B constants for the ground state 8S7/2 of the radioactive 152,154,155Eu were obtained for the first time with a precision better than 0.5%. Our data along with previous ground state hyperfine structure measurements for the stable europium isotopes allow us to determine the hyperfine anomaly for mentioned Eu isotopes.  相似文献   

10.
The hyperfine structure of the groundstate 6s 2 S 1/2 and the nuclear magnetic dipole moment of gold 197 have been studied by the atomic beam magnetic resonance technique. A special high frequency arrangement is described. The hyperfine structure separationΔ v was determined fromΔF=1 transitions. The magnetic dipole momentμ I was measured by a direct method. The experiments yield the following results:Δv (2S1/2)=(6099,309±0,010) Mc/secμ I (Au197)=+(0,1445±0,0014)μ K.  相似文献   

11.
The hyperfine structure splittings of the electronic ground statea 4 F 9/2 in the Co59-I-spectrum have been measured with a magnetic atomic-beam resonance-apparatus. From these splittings the magnetic dipole and electric quadrupole interaction constants are found to beA (a 4 F /2)=(450,284±0,01) Mc/sec,B (a 4 F 9/2)= (139,63±0,5) Mc/sec. Taking into account the mixture of thea 4 F 9/2 state with states of the same 3d 7 4s 2-electron-configuration, an electric quadrupole moment of Co59 ofQ=(0,404±0,04) 10?24 cm2 was obtained. No Sternheimer-correction has been included.  相似文献   

12.
Observing the resonance fluorescence of the transition 7d 2 D 3/2-6p 2 P 1/2 (λ=2379 Å) in the Tl I-spectrum the level crossing technique with combined electric and magnetic fields was used to investigate the hyperfine structure and the Stark effect of the 7d 2 D 3/2-state. For electric field strengthsE?25 kV/cm the Stark shifts are considerably greater than the hyperfine splitting. Therefore the crossing signals for the case of decoupled hyperfine structure could be detected. The following values of the magnetic hyperfine constantA and the Stark parameterβ were deduced: ¦A¦=55(1) Mc/sec·g J /0.8, ¦β¦=0.20(4) Mc/sec/(kV/cm)2·g J /0.8 andA/β>0. The widths of the signals yielded the mean lifetimeτ=2.7(5)·10?8 sec· 0.8/g J . Sign and values ofA andβ are discussed.  相似文献   

13.
For the odd Yb isotopes171Yb and173Yb the hyperfine splitting of the 6s6p 3 P 1 state has been measured by optical double resonance in zero magnetic field. Taking into account second order corrections due to the influence of the 61 P 1 and 63 P 0,2 states, the following results for the magnetic splitting constantA and the electric quadrupole interaction constantB have been derived: A(171Yb)=3958.228 (60) Mc/s, A(173Yb)=?1094.318 (35) Mc/s, S(173Yb)=?825.904 (85) Mc/s. The hyperfine structure anomaly of the isotopes171Yb and171 173Yb was determined to be Δ=?0.352 (10)%.  相似文献   

14.
The4I9/2 ground state of Nd3+ (4f3) is split by a crystal field of lower than cubic symmetry into five Kramer doublets. The magnetic hyperfine interactions can be calculated by using an effective magnetic hyperfine tensor Ã, which is obtained from the linear combination coefficients of the ground state doublet eigenvector. The hyperfine tensor à and the line shape depend strongly on the local structure of the system. Nondiagonal magnetic hyperfine interactions produce nonadiabatic relaxation. Corresponding lineshapes are calculated by means of the Clauser-Blume model and the eigenvalue treatment of superoperators. We found for Nd3+ in the investigated laser phosphate glass a network-forming function consistent with aC 3h orD 3h point symmetry.  相似文献   

15.
The magnetic and electric hyperfine splitting frequencies ¦gμ N B HF/h¦ ande 2 qQ/h of the 5/2?1/2[541] ground state of 14h 185Ir in Ni were measured with nuclear magnetic resonance on oriented nuclei to be 360.8(7) MHz and +6.7(2.0) MHz, respectively. The ground state magnetic dipole moment and electric quadrupole moment of185Ir are deduced to be ¦μ¦=2.601 (14)μ N andQ=?1.9(5)b, taking values for the hyperfine field and electric field gradient of BHF=?454.9 (2.3) kG and eq=?0.151(4) × 1017 V/cm2, respectively. The negative quadrupole moment is in agreement with nuclear-orientation data and proves again theI π K=5/2? 1/2 ground state configuration.  相似文献   

16.
The magnetic dipole hyperfine interaction constantsA of the atomic ground state3 D 3 and of the first excited state3 D 3 in195Pt have been measured by atomic beam magnetic resonance. The electronicg J factors of these states were determined from the Zeeman splitting in194Pt. Using intermediate coupling wave functions derived for the configurations (5d+6s)10 effective hyperfine radial integrals are evaluated.  相似文献   

17.
P. Goldner  O. Guillot-No?l 《Molecular physics》2013,111(11-12):1185-1192
The influence of an external magnetic field on the hyperfine structure of the 3 H4(0) and 1D2(0) crystal field states of Pr3+ in LiYF4 is studied in order to find an efficient three-level Λ system. Using an experimentally determined spin Hamiltonian, we show that three-level Λ systems can be obtained with equal strengths for the optically excited transitions under various magnetic field magnitudes and orientations. An analytical analysis based on two levels is proposed to find useful magnetic fields without extensive numerical calculations and to understand the general behaviour of the system. Pr3+ hyperfine structure has also been directly calculated using a complete Hamiltonian including free ion, crystal field and magnetic interactions. A good agreement with the spin Hamiltonian approach is found for the ground state whereas the excited state results poorly reproduce the experiment. This is attributed to the low accuracy of 1D2 crystal field wavefunctions. This suggests that transition strengths ratios could be calculated directly from the crystal field Hamiltonian with improved crystal field parameters.  相似文献   

18.
The resonance fluorescence of the transition 5d 2 D 5/2?5p 2 P 3/2 (λ=3256Å) in the In I-spectrum was observed as a function of an external magnetic field. From the level crossing signals the following values of the hyperfine constantsA andB of the 5d 2 D 5/2-state were deduced: ¦A¦=148(8) Mc/sec·g J/1.2 and ¦B/A¦≦0.3. The widths of the signals yielded the mean lifetimet=7.1 (6)·10?9 sec · 1.2/g J . From the shifts of the signals caused by a constant electric field parallel to the magnetic field the value of the Stark parameter ¦β¦=0.19(4) Mc/sec/(kV/cm)2 ·g J /1.2 and the sign of the ratioA/β<0 were determined. Calculations with Coulomb wave functions show that the Stark shifts of the electric field are mainly due to admixtures of the 6p 2 P 3/2-state.  相似文献   

19.
The optical orientation of the angular momenta of alkali atoms in the presence of a buffer gas (molecular nitrogen) has been studied experimentally. It has been shown that, even at a low concentration of molecular nitrogen in the cell, the excitation of 133Cs atoms from the lower hyperfine level with F = 3, which belongs to the ground 2S1/2 state, results in a larger amplitude of the magnetic resonance than the excitation from the hyperfine level with F = 4. This result has been theoretically explained under the assumption that the spin state of the alkali atomic nucleus does not change at collision with a nitrogen molecule, which is accompanied by a nonradiative transition of the alkali atom from the excited 2P1/2 state to the ground 2S1/2 state.  相似文献   

20.
The hyperfine structure of the 6s 6p 3 P 1 state of171Yb and173Yb has been investigated by the level crossing technique and by optical double resonance. The following results for the magnetic hfs splitting constantA and for the electric quadrupole interaction constantB have been obtained:A(171Yb)=3959.1(14)Mc/sec;A(173Yb)=?1094.7(6) Mc/sec;B(173Yb)=?826.9(9) Mc/sec. The hyperfine structure anomaly of the isotopes171Yb and173Yb was determined to beΔ=?0.36(3)%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号