首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A host supramolecular structure consisting of bis-(2,2':6',2"-terpyridine)-4'-oxyhexadecane (BT-O-C16) is shown to respond to coadsorbed molecules in dramatic ways, as observed by scanning tunneling microscopy (STM) on a highly oriented pyrolytic graphite (HOPG) surface under ambient conditions. Interestingly, the lattice parameter of the triphenylene-filled complex differs significantly from that of the coronene-filled one, although the triphenylene and coronene molecules are nearly the same size. The STM study and density functional theory calculations reveal that intermolecular hydrogen-bond interactions play an essential role in forming the assembly structures. The different electronic properties of coronene and triphenylene molecules are responsible for the difference in lattice parameters and consequently for the difference in filling behaviors in the coronene/BT-O-C16 and triphenylene/BT-O-C16 binary systems.  相似文献   

2.
3.
4.
5.
We report on a multi‐technique investigation of the supramolecular organisation of N,N‐diphenyl oxalic amide under differently dimensioned environments, namely three‐dimensional (3D) in the bulk crystal, and in two dimensions on the Ag(111) surface as well as on the reconstructed Au(111) surface. With the help of X‐ray structure analysis and scanning tunneling microscopy (STM) we find that the molecules organize in hydrogen‐bonded chains with the bonding motif qualitatively changed by the surface confinement. In two dimensions, the chains exhibit enantiomorphic order even though they consist of a racemic mixture of chiral entities. By a combination of the STM data with near‐edge X‐ray absorption fine‐structure spectroscopy, we show that the conformation of the molecule adapts such that the local registry of the functional group with the substrate is optimized while avoiding steric hindrance of the phenyl groups. In the low coverage case, the length of the chains is limited by the Au(111) reconstruction lines restricting the molecules into fcc stacked areas. A kinetic Monte Carlo simulated annealing is used to explain the selective assembly in the fcc stacked regions.  相似文献   

6.
7.
8.
Controlled self-assembly and chemical tailoring of bimolecular networks on surfaces is demonstrated using structural derivatives of 3,4:9,10-perylenetetracarboxylic diimide (PTCDI) combined with melamine (1,3,5-triazine-2,4,6-triamine). Two functionalised PTCDI derivatives have been synthesised, Br(2)-PTCDI and di(propylthio)-PTCDI, through attachment of chemical side groups to the perylene core. Self-assembled structures formed by these molecules on a Ag-Si(111)${\sqrt{3}}$x${\sqrt{3}}$R30 degrees surface were studied with a room-temperature scanning tunneling microscope under ultrahigh vacuum conditions. It is shown that the introduction of side groups can have a significant effect upon both the structures formed, notably in the case of di(propylthio)-PTCDI which forms a previously unreported unimolecular hexagonal arrangement, and their entrapment behaviour. These results demonstrate a new route of functionalisation for network pores, opening up the possibility of designing nanostructured surface structures with chemical selectivity and applications in nanostructure templating.  相似文献   

9.
Bicomponent supramolecular polymers , consisting of two alternating molecules bridged through six H‐bonds, are observed by STM at the solid–liquid interface. Control of the geometry of the 1D architecture was obtained by using two different connecting molecules with different conformational rigidity, affording either linear (see picture, left) or zigzag (right) motifs.

  相似文献   


10.
11.
12.
13.
14.
Hydrogen-bond formation between ionic adsorbates on an Ag(111) surface under ultrahigh vacuum was studied by scanning tunneling microscopy/spectroscopy (STM/STS), X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS), and molecular dynamics calculations. The adsorbate, 1,3,5-benzenetricarboxylic acid (trimesic acid, TMA), self-assembles at low temperatures (250-300 K) into the known open honeycomb motif through neutral hydrogen bonds formed between carboxyl groups, whereas annealing at 420 K leads to a densely packed quartet structure consisting of flat-lying molecules with one deprotonated carboxyl group per molecule. The resulting charged carboxylate groups form intermolecular ionic hydrogen bonds with enhanced strength compared to the neutral hydrogen bonds; this represents an alternative supramolecular bonding motif in 2D supramolecular organization.  相似文献   

15.
16.
17.
Halogen bonding (XB) has been used to assemble tetrakis(4-pyridyl)pentaerythritol (tetradentate XB acceptor) with different alpha,omega-diiodoperfluoroalkanes (bidentate XB donors) or tetrakis(4-iodotetrafluorophenyl)pentaerythritol (tetradentate XB donor). The remarkable linearity of the XB formed, the rodlike character of alpha,omega-diiodoperfluoroalkanes and the mutual complementarities of pentaerythritol partners, translate the three-dimensional character of the XB acceptor into open primary networks, which interpenetrate to avoid the presence of voids and to ensure segregation of the modules. Two-dimensional (2D) square 4(4) layers (sql) with fourfold and fivefold interpenetration, as well as an eightfold diamondoid network (dia) of class Ia and a remarkable tenfold dia network of class IIIa, have been obtained.  相似文献   

18.
The bow-shaped molecule 1 bearing a self-complementary DAAD-ADDA (D=donor A=acceptor) hydrogen-bonding array generates, in hydrocarbon solvents, highly ordered supramolecular sheet aggregates that subsequently give rise to gels by formation of an entangled network. The process of hierarchical self-assembly of compound 1 was investigated by the concentration and temperature dependence of UV-visible and (1)H NMR spectra, fluorescence spectra, and electron microscopy data. The temperature dependence of the UV-visible spectra indicates a highly cooperative process for the self-assembly of compound 1 in decaline. The electron micrograph of the decaline solution of compound 1 (1.0 mM) revealed supramolecular sheet aggregates forming an entangled network. The selected area electronic diffraction patterns of the supramolecular sheet aggregates were typical for single crystals, indicative of a highly ordered assembly. The results exemplify the generation, by hierarchical self-assembly, of highly organized supramolecular materials presenting novel collective properties at each level of organization.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号