首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
本应用探针恒温原子化技术,系统研究了铍的分析性能,比较了不同类型石墨管和探针材料的测定效果。应用固体悬浮进样,直接测定了地质样品中的痕量铍,方法的RSD为3.3 ̄5.2%,检测限为5.1×10^-12g铍。  相似文献   

2.
本文应用探针恒温原子化技术 ,系统研究了铬的分析性能 ,应用固体悬浮进样 ,直接测定了地质样品中的痕量铬 ,方法的 RSD为 3.0 %~ 6 .5 % ,检测限为 5 .1× 10 - 1 2 g铬 ,标准物质的测定结果满意  相似文献   

3.
Energy‐dispersive X‐ray fluorescence (XRF) is an important tool used in routine elemental analysis of atmospheric particulate matter (PM) samples collected on polytetrafluoroethylene (PTFE) membrane filters. The method requires calibration against thin‐film standards of known elemental masses commonly obtained from commercial suppliers. These standards serve as a convenient and widely accepted interlaboratory reference but can differ significantly from samples in their chemical composition, substrate, and geometry. These differences can introduce uncertainties regarding the absolute accuracy of the calibration for atmospheric samples. Continuous elemental records of the US Interagency Monitoring of Protected Visual Environments (IMPROVE) PM monitoring network extend back to 1988. Evaluation of long‐term concentration trends and comparison with other networks demand a calibration that is accurate and precise compared with the uncertainty of the XRF measurement itself. We describe a method to prepare sulfur reference materials that are optimized for calibration of XRF instruments used to analyze IMPROVE PM samples. The reference materials are prepared by using the atmospheric form of the element, by reproducing the sample geometry, and by using the same substrate as in samples. Our results show that stable, pure, anhydrous, and stoichiometric deposits are collected onto the filter substrates, and furthermore, that the reference material masses are accurate and have acceptable uncertainty in the measurement range. The XRF response of the sulfur reference materials is similar to other commercial standards and is linear in the measurement range, and the slope of the multipoint calibration curve has very low uncertainty. These reference materials are valid for the calibration of XRF systems, and they bring improved transparency and credibility to the IMPROVE calibration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
The accurate analysis of hard CuP and CuPAg‐type solders using X‐ray fluorescence spectrometry is a difficult task. Surface milling, the most common sample preparation method for calibration materials, results in poor accuracy for the phosphorus analysis, as evidenced by the unacceptable values of the root mean square error. Meanwhile, the analysis of real samples provides incorrect results, and microstructural effects are the main source of error. Thus, this effect was negated by considering the information depth of the phosphorus Kα line and the microstructure size of the alloys. Phosphorus was measured using a thin layer of the sample (a thickness of several micrometers). As a result, the analyzed layer was a poor representative of the sample. Two different approaches for solving the microstructural effect issue were proposed. In the first method, the alloy was remelted under controlled conditions to obtain fine‐grain samples, which successfully limited the microstructural effects. The second solution used specially prepared thin layer samples, and the sample dissolution eliminated the microstructural effect. Using the developed sample treatment methods resulted in an improvement in the accuracy of the phosphorus calibration curves. This allowed for the correct determination of phosphorus and other alloying elements in the Cu‐based alloys with low uncertainties.  相似文献   

5.
Compared to conventional dissolution methods, solid and slurry sampling methods offer advantages which include speed, improved sensitivity, a reduced risk of contamination, and a reduced risk of analyte loss. Most successful graphite furnace atomic absorption spectrometry (GFAAS) results have been obtained by the use of modern furnace technology, which includes Zeeman background correction, platform atomization, and matrix modifiers. In this work, solid and slurry sampling were investigated for the determination of Ag, Cu, Fe, Mn, Pb, and Zn in biological National Institute of Standards and Technology (NIST) standard reference materials (SRMs) with the use of vintage (1980) GFAAS instrumentation, aqueous calibration, and deuterium arc background correction. Although reasonable accuracy was obtained with solid sampling, the relative standard deviation was between 13 and 53%, which was probably caused by the inability of the furnace to reproducibly vaporize the sample and the inability of deuterium arc background correction to account for the high background signals. Good accuracy and precision (3–13%) were obtained with slurry sampling, with the exception of the determination of copper in citrus leaves. This low result (three times below the certified value) and high precision (RSD = 31%) were probably caused by irreproducible atomization of the sample matrix.  相似文献   

6.
近红外光谱分析中建模校正集的选择   总被引:5,自引:0,他引:5  
将极大线性无关组的概念及方法引入近红外光谱分析,探讨了在建立定量分析模型时代表性样品,即校正集样品的选择问题。以2 652个烟末样品为实验材料,随机选取1 001个样品构成预测集,其余1 651个样品为代表性样品备选集。用Matlab软件求出代表性样品备选集光谱矩阵的极大线性无关组,以此作为代表性样品,构成建模的校正集。用PLS回归法建立了烟末样品总糖含量定量分析的预测模型,并将模型用于预测集中1 001个烟末样品总糖含量的预测分析。实验结果表明,当选择的校正集包含的样品数量大于32时,所建各模型对预测集样品预测的平均相对误差均小于4%,平均相关系数大于0.96。其中选择32个代表性样品和146个代表性样品所建模型定量分析预测集中各样品的总糖含量,两个结果经统计检验没有显著性差异(α=0.05),说明求极大线性无关组的方法用于校正集样品的选择,可实现“少而精”选择样品的目的。此外,我们用求极大线性无关组选择校正集样品和随机方法选择校正集样品两种方法,选择了同样数目28,32,41,76,146,163个样品建模进行预测效果的对比实验,结果显示,求极大线性无关组法选择校正集建模的预测效果优于随机选择校正集建模的预测效果。  相似文献   

7.
This paper describes a methodology for the analysis of nitrogen by scanning electron microscope with an energy dispersive X‐ray spectrometer (SEM‐EDS). The methodology was developed to have a rapid and accurate alternative method to the elemental analysis by combustion and thermoconductivity detection that does not imply the decomposition of the sample. Two methods by SEM‐EDS were established: a quantitative method trying to construct a calibration curve with reference materials and another using the standardless method provided with the instrument software, and the results were compared with those obtained by elemental analysis using two instruments that work at different temperature. An important matrix effect was found when trying to construct a calibration curve for SEM‐EDS for any kind of material, being corrected when using the standardless method because this method corrects the matrix effect. The quantification of nitrogen by SEM‐EDS is a good alternative to elemental analysis by combustion and thermoconductivity detection in those cases where the sample has a very high decomposition temperature. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
基于LIBS技术的钢铁合金中元素多变量定量分析方法研究   总被引:2,自引:0,他引:2  
针对钢铁合金样品元素组成相对复杂,基体效应较严重的问题,利用激光诱导击穿(LIBS)光谱技术对钢铁合金中的元素进行了定量分析。以Nd∶YAG脉冲激光器基频1 064 nm波长激光作为激发光源,采用中阶梯光栅光谱仪和ICCD分光探测钢铁合金样品的LIBS光谱。通过优化实验确定最佳探测延时为1.5 μs,最佳探测门宽为2 μs,激光聚焦点位置在实验样品靶面以下1.5 mm。采用单变量定量分析、多变量线性回归和偏最小二乘(PLS)三种方法分析钢铁合金中Cr元素和Ni元素的含量。结果表明,采用单变量定标方法定标曲线相关系数不高,对待测样的预测误差相对较大,难以有效地定量分析基体元素复杂的钢铁合金中金属元素的含量;采用多变量线性回归分析方法能有效提高定量分析的精度;采用PLS方法得到的Cr和Ni元素的拟合曲线相关系数r分别为0.981和0.995,对两个待测样品中Cr元素和Ni元素的预测相对误差在6.4%和7.1%以内,分析结果优于多变量线性回归方法。可见,采用多变量校正的PLS方法能更有效地校正基体效应对定量分析的影响,提高定量分析的精度。  相似文献   

9.
由于块状固体标准玉石样品的缺乏,造成了便携式X射线荧光分析技术(pXRF)利用工作曲线法对玉石文物样品进行无损定量分析的困难。试图寻找一种pXRF可采用,但不需要块状固体玉石标准样品的定量分析方法。选取24件软玉样品,其中17件为校准样品,7件为测试样品。所有软玉样品利用质子激发X射线荧光分析技术(PIXE)获得定量分析结果。根据校准软玉样品的PIXE定量分析结果建立兴趣元素的工作曲线,利用工作曲线对测试软玉样品进行定量分析;然后,利用pXRF对所有软玉样品进行定性分析,获得其定性分析图谱,利用校准软玉样品的定性分析图谱和PIXE定量分析结果,采用最小偏二乘法对测试软玉样品兴趣元素含量进行分析。最后,将工作曲线法、PLS方法和PIXE的定量分析结果进行了相互对比。通过误差分析,评估了工作曲线法和PLS方法定量分析软玉样品的精确度。结果表明,PLS方法可以代替工作曲线法对玉石类样品进行定量分析。  相似文献   

10.
The chemical characterisation of very small‐sized samples is often of major interest in forensic analysis, studies of artworks, particulate matter on filters, raw materials impurities, and so on, although it generally poses considerable problems owing to the difficulty of obtaining precise and accurate results. This study was undertaken to develop a set of methods for the chemical characterisation of very small‐sized samples by wavelength‐dispersive X‐ray fluorescence. To conduct the study, sample preparation (as beads and pellets) and measurement conditions were optimised to reach the necessary detection and quantification limits and to obtain the appropriate measurement uncertainty for characterising the types of materials involved. The measurements were validated by using reference materials. Three test methods were developed. In two methods, the samples were prepared in the form of beads (one method being for geological materials and the other for the analysis of nongeological materials such as particulate matter on filters, glasses, frits, and ceramic glazes and pigments). In the third method, the samples were prepared in the form of pellets for the analysis of volatile elements in geological materials. In the three methods, detection limits, quantification limits and measurement uncertainties were obtained similar to those found when a bead or pellet is prepared by the usual methods from 0.5 g sample. However, in this study, sample size was between 30 and 40 times smaller in the case of beads and 100 times smaller in the case of pellets, thus broadening the range of possible wavelength‐dispersive X‐ray fluorescence applications in the chemical characterisation of materials. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号