首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
We consider applying the Douglas–Rachford splitting method (DRSM) to the convex minimization problem with linear constraints and a separable objective function. The dual application of DRSM has been well studied in the literature, resulting in the well known alternating direction method of multipliers (ADMM). In this paper, we show that the primal application of DRSM in combination with an appropriate decomposition can yield an efficient structure-exploiting algorithm for the model under consideration, whose subproblems could be easier than those of ADMM. Both the exact and inexact versions of this customized DRSM are studied; and their numerical efficiency is demonstrated by some preliminary numerical results.  相似文献   

4.
We propose a splitting method for solving equilibrium problems involving the sum of two bifunctions satisfying standard conditions. We prove that this problem is equivalent to find a zero of the sum of two appropriate maximally monotone operators under a suitable qualification condition. Our algorithm is a consequence of the Douglas–Rachford splitting applied to this auxiliary monotone inclusion. Connections between monotone inclusions and equilibrium problems are studied.  相似文献   

5.
6.
We establish a region of convergence for the proto-typical non-convex Douglas–Rachford iteration which finds a point on the intersection of a line and a circle. Previous work on the non-convex iteration Borwein and Sims (Fixed-point algorithms for inverse problems in science and engineering, pp. 93–109, 2011) was only able to establish local convergence, and was ineffective in that no explicit region of convergence could be given.  相似文献   

7.
8.
In this paper, we study the generalized Douglas–Rachford algorithm and its cyclic variants which include many projection-type methods such as the classical Douglas–Rachford algorithm and the alternating projection algorithm. Specifically, we establish several local linear convergence results for the algorithm in solving feasibility problems with finitely many closed possibly nonconvex sets under different assumptions. Our findings not only relax some regularity conditions but also improve linear convergence rates in the literature. In the presence of convexity, the linear convergence is global.  相似文献   

9.
10.
We discuss the Douglas–Rachford algorithm to solve the feasibility problem for two closed sets A,B in \({\mathbb{R}^d}\) . We prove its local convergence to a fixed point when A,B are finite unions of convex sets. We also show that for more general nonconvex sets the scheme may fail to converge and start to cycle, and may then even fail to solve the feasibility problem.  相似文献   

11.
Douglas–Rachford method is a splitting algorithm for finding a zero of the sum of two maximal monotone operators. Weak convergence in this method to a solution of the underlying monotone inclusion problem in the general case remained an open problem for 30 years and was proved by the author 7 years ago. That proof was cluttered with technicalities because we considered the inexact version with summable errors. In this short communication we present a streamlined proof of this result.  相似文献   

12.
Recently, the convergence of the Douglas–Rachford splitting method (DRSM) was established for minimizing the sum of a nonsmooth strongly convex function and a nonsmooth hypoconvex function under the assumption that the strong convexity constant \(\beta \) is larger than the hypoconvexity constant \(\omega \). Such an assumption, implying the strong convexity of the objective function, precludes many interesting applications. In this paper, we prove the convergence of the DRSM for the case \(\beta =\omega \), under relatively mild assumptions compared with some existing work in the literature.  相似文献   

13.
Mathematical Programming - The Douglas–Rachford algorithm is a very popular splitting technique for finding a zero of the sum of two maximally monotone operators. The behaviour of the...  相似文献   

14.
In this paper, we study the local linear convergence properties of a versatile class of Primal–Dual splitting methods for minimizing composite non-smooth convex optimization problems. Under the assumption that the non-smooth components of the problem are partly smooth relative to smooth manifolds, we present a unified local convergence analysis framework for these methods. More precisely, in our framework, we first show that (i) the sequences generated by Primal–Dual splitting methods identify a pair of primal and dual smooth manifolds in a finite number of iterations, and then (ii) enter a local linear convergence regime, which is characterized based on the structure of the underlying active smooth manifolds. We also show how our results for Primal–Dual splitting can be specialized to cover existing ones on Forward–Backward splitting and Douglas–Rachford splitting/ADMM (alternating direction methods of multipliers). Moreover, based on these obtained local convergence analysis result, several practical acceleration techniques are discussed. To exemplify the usefulness of the obtained result, we consider several concrete numerical experiments arising from fields including signal/image processing, inverse problems and machine learning. The demonstration not only verifies the local linear convergence behaviour of Primal–Dual splitting methods, but also the insights on how to accelerate them in practice.  相似文献   

15.
Journal of Global Optimization - We consider a class of generalized DC (difference-of-convex functions) programming, which refers to the problem of minimizing the sum of two convex (possibly...  相似文献   

16.
17.
In this paper, we present two Douglas–Rachford inspired iteration schemes which can be applied directly to N-set convex feasibility problems in Hilbert space. Our main results are weak convergence of the methods to a point whose nearest point projections onto each of the N sets coincide. For affine subspaces, convergence is in norm. Initial results from numerical experiments, comparing our methods to the classical (product-space) Douglas–Rachford scheme, are promising.  相似文献   

18.
We discuss recent positive experiences applying convex feasibility algorithms of Douglas–Rachford type to highly combinatorial and far from convex problems.  相似文献   

19.
We study the applicability of the Peaceman–Rachford (PR) splitting method for solving nonconvex optimization problems. When applied to minimizing the sum of a strongly convex Lipschitz differentiable function and a proper closed function, we show that if the strongly convex function has a large enough strong convexity modulus and the step-size parameter is chosen below a threshold that is computable, then any cluster point of the sequence generated, if exists, will give a stationary point of the optimization problem. We also give sufficient conditions guaranteeing boundedness of the sequence generated. We then discuss one way to split the objective so that the proposed method can be suitably applied to solving optimization problems with a coercive objective that is the sum of a (not necessarily strongly) convex Lipschitz differentiable function and a proper closed function; this setting covers a large class of nonconvex feasibility problems and constrained least squares problems. Finally, we illustrate the proposed algorithm numerically.  相似文献   

20.
《Optimization》2012,61(5):1239-1261
We provide two weakly convergent algorithms for finding a zero of the sum of a maximally monotone operator, a cocoercive operator, and the normal cone to a closed vector subspace of a real Hilbert space. The methods exploit the intrinsic structure of the problem by activating explicitly the cocoercive operator in the first step, and taking advantage of a vector space decomposition in the second step. The second step of the first method is a Douglas–Rachford iteration involving the maximally monotone operator and the normal cone. In the second method, it is a proximal step involving the partial inverse of the maximally monotone operator with respect to the vector subspace. Connections between the proposed methods and other methods in the literature are provided. Applications to monotone inclusions with finitely many maximally monotone operators and optimization problems are examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号